Surface area of cube `S=6a^(2)` (where a=side of cube) Body diagonal `1=sqrt(3)a`. Therefore `S=2l^(2)` Differentiating it w.r.t. time `(dS)/(dt)=2(2l)(dl)/(dt)rArr (dl)/(dt)=(1)/(4(sqrt(3)a))(dS)/(dt)=5/(4sqrt(3)) m//s`
Mass particles of 1 kg each are placed along x-axus at x=1, 2, 4, 8, .... oo . Then gravitational force o a mass of 3 kg placed at origin is (G= universal gravitation constant) :-
1,2,4,8,16,"…."
Solution set of the inequality sin^(-1)(sin((2x^2+3)/(x^2+1)))lt=pi-5/2 is- a. (-oo,\ 1)uu(1,\ oo) b. [-1,\ 1] c. (-1,\ 1)\ d. (-oo,-1]uu[1,\ oo)
Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^2+5((2n+1)/(2n-1))^3+...