Home
Class 7
MATHS
sqrt(1 9/16)-sqrt(1 7/9)=...

`sqrt(1 9/16)-sqrt(1 7/9)=`______

A

44208

B

44230

C

`-1/12`

D

`-2//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{1 \frac{9}{16}} - \sqrt{1 \frac{7}{9}} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert the mixed numbers into improper fractions. - For \( 1 \frac{9}{16} \): \[ 1 \frac{9}{16} = \frac{1 \times 16 + 9}{16} = \frac{16 + 9}{16} = \frac{25}{16} \] - For \( 1 \frac{7}{9} \): \[ 1 \frac{7}{9} = \frac{1 \times 9 + 7}{9} = \frac{9 + 7}{9} = \frac{16}{9} \] ### Step 2: Rewrite the Expression Now we can rewrite the original expression using the improper fractions: \[ \sqrt{\frac{25}{16}} - \sqrt{\frac{16}{9}} \] ### Step 3: Calculate the Square Roots Next, we calculate the square roots of the fractions: - \( \sqrt{\frac{25}{16}} = \frac{\sqrt{25}}{\sqrt{16}} = \frac{5}{4} \) - \( \sqrt{\frac{16}{9}} = \frac{\sqrt{16}}{\sqrt{9}} = \frac{4}{3} \) ### Step 4: Rewrite the Expression Again Now we can rewrite the expression with the calculated square roots: \[ \frac{5}{4} - \frac{4}{3} \] ### Step 5: Find a Common Denominator To subtract these fractions, we need a common denominator. The least common multiple (LCM) of 4 and 3 is 12. - Convert \( \frac{5}{4} \) to have a denominator of 12: \[ \frac{5}{4} = \frac{5 \times 3}{4 \times 3} = \frac{15}{12} \] - Convert \( \frac{4}{3} \) to have a denominator of 12: \[ \frac{4}{3} = \frac{4 \times 4}{3 \times 4} = \frac{16}{12} \] ### Step 6: Subtract the Fractions Now we can subtract the two fractions: \[ \frac{15}{12} - \frac{16}{12} = \frac{15 - 16}{12} = \frac{-1}{12} \] ### Final Answer Thus, the final answer is: \[ \sqrt{1 \frac{9}{16}} - \sqrt{1 \frac{7}{9}} = -\frac{1}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 3)|17 Videos
  • NUMBER SYSTEM

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS|24 Videos
  • NUMBER SYSTEM

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 1)|19 Videos
  • MOCK TEST

    PEARSON IIT JEE FOUNDATION|Exercise QUESTIONS|25 Videos
  • RATIO AND ITS APPLICATIONS

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (TEST 2)|12 Videos

Similar Questions

Explore conceptually related problems

sqrt(9)/(sqrt(7)+sqrt(2))

sqrt(3^(2)sqrt(9^(2)sqrt((81)^(2)sqrt(16)^(16)))) =______.

If x is small,then sqrt(x^(2)+16)-sqrt(x^(2)+9)=

sqrt(9) times sqrt(9)=

Evaluate the following: (i) sqrt(-81) (ii) (sqrt(-2))^(6) (iii) sqrt(-25)xxsqrt(-49) (iv) (2)/(3)xxsqrt((-9)/(16)) (v) sqrt((-49)/(25))xxsqrt((-1)/(9))