Home
Class 7
MATHS
If (x+a)^(2) = x^(2) + 1 + (1)/( 4x^2), ...

If `(x+a)^(2) = x^(2) + 1 + (1)/( 4x^2)`, then find `a.`

A

`a = (1)/( 5x)`

B

`a = (1)/( 2x)`

C

`a = (1)/( 3x)`

D

`a = (1)/( 4x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x + a)^2 = x^2 + 1 + \frac{1}{4x^2}\) and find the value of \(a\), we can follow these steps: ### Step 1: Expand the left-hand side Using the formula for the square of a binomial, we have: \[ (x + a)^2 = x^2 + 2ax + a^2 \] ### Step 2: Set the expanded form equal to the right-hand side Now we can set the expanded left-hand side equal to the right-hand side: \[ x^2 + 2ax + a^2 = x^2 + 1 + \frac{1}{4x^2} \] ### Step 3: Cancel \(x^2\) from both sides Since \(x^2\) appears on both sides, we can cancel it: \[ 2ax + a^2 = 1 + \frac{1}{4x^2} \] ### Step 4: Rearrange the equation Now we need to isolate terms involving \(a\): \[ 2ax + a^2 - 1 - \frac{1}{4x^2} = 0 \] ### Step 5: Identify coefficients This is a quadratic equation in terms of \(a\). We can rewrite it as: \[ a^2 + 2ax - 1 - \frac{1}{4x^2} = 0 \] ### Step 6: Use the quadratic formula To find \(a\), we can use the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(b = 2x\), \(c = -\left(1 + \frac{1}{4x^2}\right)\). ### Step 7: Calculate the discriminant Calculate the discriminant: \[ b^2 - 4ac = (2x)^2 - 4 \cdot 1 \cdot \left(-\left(1 + \frac{1}{4x^2}\right)\right) \] \[ = 4x^2 + 4\left(1 + \frac{1}{4x^2}\right) \] \[ = 4x^2 + 4 + 1 = 4x^2 + 5 \] ### Step 8: Substitute back into the quadratic formula Now substitute back into the quadratic formula: \[ a = \frac{-2x \pm \sqrt{4x^2 + 5}}{2} \] \[ = -x \pm \frac{\sqrt{4x^2 + 5}}{2} \] ### Step 9: Simplify the expression Thus, we have two possible values for \(a\): \[ a = -x + \frac{\sqrt{4x^2 + 5}}{2} \quad \text{or} \quad a = -x - \frac{\sqrt{4x^2 + 5}}{2} \] ### Conclusion The value of \(a\) depends on the value of \(x\). However, if we need a specific value for \(a\), we can evaluate it for a particular value of \(x\).
Promotional Banner

Topper's Solved these Questions

  • FORMULAS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1) |16 Videos
  • FORMULAS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 2) |17 Videos
  • FORMULAS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (Short Answer Type Questions)|10 Videos
  • FORMULAE

    PEARSON IIT JEE FOUNDATION|Exercise TEST 2|11 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos

Similar Questions

Explore conceptually related problems

If x + (1)/(2x) = 4 , then find x^(2) + (1)/(4x^(2)) .

If f(x^(2) - 4x + 4) = x^(2) + 1 . Find f(1) if f(1) lt 8 .

If 5x - (1)/(2x) = 3 , then find 25x^(2) + (1)/(4x^(2)) .

If x - (1)/(x) = 2 , then find x^(4) + (1)/(x^(4)) .

int ((x ^ (-6) -64) / (4 + 2x ^ (-1) + x ^ (-2)) * (x ^ (2)) / (4-4x ^ (-1) + x ^ (-2))-(4x ^ (2) (2x + 1)) / (1-2x)) dx