Home
Class 8
MATHS
Simplify the equation ((a)/(2)-(b)/(3))^...

Simplify the equation `((a)/(2)-(b)/(3))^(3)+((a)/(2)+(b)/(3))^(3)`.

A

`(a^(3))/(4)+ab^(2)`

B

`(a^(3))/(4)+(ab^(2))/(3)`

C

`(2b^(3))/(27)+(a^(2)b)/(2)`

D

`(2b^(3))/(27)+a^(2)b`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{a}{2} - \frac{b}{3}\right)^3 + \left(\frac{a}{2} + \frac{b}{3}\right)^3\), we can use the identity for the sum of cubes. The identity states that: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] where \(x = \frac{a}{2} - \frac{b}{3}\) and \(y = \frac{a}{2} + \frac{b}{3}\). ### Step 1: Identify \(x\) and \(y\) Let: \[ x = \frac{a}{2} - \frac{b}{3} \] \[ y = \frac{a}{2} + \frac{b}{3} \] ### Step 2: Calculate \(x + y\) Now, we find \(x + y\): \[ x + y = \left(\frac{a}{2} - \frac{b}{3}\right) + \left(\frac{a}{2} + \frac{b}{3}\right) = \frac{a}{2} + \frac{a}{2} = a \] ### Step 3: Calculate \(xy\) Next, we calculate \(xy\): \[ xy = \left(\frac{a}{2} - \frac{b}{3}\right)\left(\frac{a}{2} + \frac{b}{3}\right) = \left(\frac{a}{2}\right)^2 - \left(\frac{b}{3}\right)^2 = \frac{a^2}{4} - \frac{b^2}{9} \] ### Step 4: Calculate \(x^2 + y^2\) Now, we calculate \(x^2 + y^2\): \[ x^2 + y^2 = \left(\frac{a}{2} - \frac{b}{3}\right)^2 + \left(\frac{a}{2} + \frac{b}{3}\right)^2 \] Using the formula \( (u - v)^2 + (u + v)^2 = 2u^2 + 2v^2 \): \[ = 2\left(\frac{a}{2}\right)^2 + 2\left(\frac{b}{3}\right)^2 = 2\left(\frac{a^2}{4}\right) + 2\left(\frac{b^2}{9}\right) = \frac{a^2}{2} + \frac{2b^2}{9} \] ### Step 5: Substitute into the sum of cubes formula Now substituting into the sum of cubes formula: \[ x^3 + y^3 = (x + y)\left(x^2 - xy + y^2\right) \] \[ = a\left(\frac{a^2}{2} + \frac{2b^2}{9} - \left(\frac{a^2}{4} - \frac{b^2}{9}\right)\right) \] ### Step 6: Simplify the expression Now simplify: \[ = a\left(\frac{a^2}{2} + \frac{2b^2}{9} - \frac{a^2}{4} + \frac{b^2}{9}\right) \] Combining the terms: \[ = a\left(\frac{2a^2}{4} - \frac{a^2}{4} + \frac{3b^2}{9}\right) = a\left(\frac{a^2}{4} + \frac{b^2}{3}\right) \] ### Final Result Thus, the simplified expression is: \[ \frac{a}{4}\left(a^2 + \frac{4b^2}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 2)|21 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 3)|6 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESTIONS)|6 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

((3a)/(5)+(2b)/(3))((3a)/(5)-(2b)/(3))= ?

Simplify that : ((x^(2)y^(2))/(a^(2)b^(3)))^(n)

Simplify the following (3a^(4)b^(3))(18a^(3)b^(5)) (ii) (3a^(7)b^(6))/(18a^(6)b^(8))((-2a^(2))/(b^(3)))^(3)

Simplify each of the products: ((1)/(2)a-3b)(3b+(1)/(2)a)((1)/(4)a^(2)+9b^(2))

Simplify : ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))

Simplify : (a) (9)^(3//2) (b) (9)^(-3//2) (c ) (25)^(3//2) (d) (36)^(3//2) (e ) (49)^(-3//2) (f) (0.0001)^(-3//4)

Simplify: ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))

PEARSON IIT JEE FOUNDATION-POLYNOMIALS, LCM AND HCF OF POLYNOMIALS -CONCEPT APPLICATION (LEVEL 1)
  1. (a+1/a+2)^2=4 then find a^2+1/a^2 given that a^2+1/a^2 can not be nega...

    Text Solution

    |

  2. The product of the polynomials (x^(2)-x+2) and (x-1) is .

    Text Solution

    |

  3. Simplify the equation ((a)/(2)-(b)/(3))^(3)+((a)/(2)+(b)/(3))^(3).

    Text Solution

    |

  4. Factorize : (x-y)^3+(y-z)^3+(z-x)^3

    Text Solution

    |

  5. If x+y=3 and xy=2, then find x^4+y^4.

    Text Solution

    |

  6. The HCF of the polynomials 10(a-1)(a-2)^(3),120(a-3)(a-2)^(3), and 135...

    Text Solution

    |

  7. The LCM of the polynomials 12(x^4+x^3+x^2) and 18(x^4-x) is

    Text Solution

    |

  8. The polynomials a^(2)-b+ab-a, on factorization, reduces to .

    Text Solution

    |

  9. find value (8x^(3)+11x)div3x

    Text Solution

    |

  10. The HCF of polynomials x^(3)-1 and x^(2)-1 is .

    Text Solution

    |

  11. The factorized form of the polynomial y^2 + (x -1) y - x is

    Text Solution

    |

  12. if a+b=3 and ab=2, then find a^3+b^3.

    Text Solution

    |

  13. The value of 51^3 + 49^3 is

    Text Solution

    |

  14. If x+y+z=5 and xy+yz+zx=7, then x^(3)+y^(3)+z^(3)-3xyz = .

    Text Solution

    |

  15. Factorization of the polynomial (x - y)^2 a^2 + 2(x- y) (x + y) ab + ...

    Text Solution

    |

  16. The factors of the expression x^(2)-2x-63 are .

    Text Solution

    |

  17. If ab+bc+ca=4 and abc=2, then find the value of (1)/(a)+(1)/(b)+(1)/(c...

    Text Solution

    |

  18. Factorize x^(2)-y^(2)+z^(2)-a^(2)+2(xz+ay)

    Text Solution

    |

  19. If x+1/x=7 then x^3-1/(x^3) is

    Text Solution

    |

  20. If 1/a+1/b+1/c =1 and abc =2 then find ab^2c^2+a^2bc^2+a^2b^2c is

    Text Solution

    |