Home
Class 12
MATHS
Without expanding at any stage, prove th...

Without expanding at any stage, prove that the value of each of the following determinants is zero. (1)` |[0,p-q,p-r],[q-p,0,q-r],[r-p,r-q,0]|` (2)`|[41,1,5],[79,7,9],[29,5,3]|` (3)`|[1,w,w^2],[w,w^2,1],[w^2,1,w]|` , where w is cube root of unity

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

|{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}|=0 where omega is an imaginary cube root of unity.

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega be the imaginary cube root of 1 ,then the value of (3+omega+3omega^2)^4 will be ___

Evaluate: |{:(1,1,1),(1,omega^2,omega),(1,omega,omega^2):}| (where omega is an imaginary cube root of unity ).

If omega is an imaginary cube root of unity, then the value of (1+ omega- omega^(2))(1- omega + omega ^(2)) is-

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is an imaginary cube root of unity then the value of omega^n+omega^(2n) (where n is not a multiple of 3) is

If omega be the imaginary cube root of 1, then the value of (3+omega+3omega^(2))^(4) will be

the area of the triangle formed by 1, omega, omega^2 where omega be the cube root of unity is

(b) answer any one of the foll.: (i) prove without expanding |[1,omega,omega ^2],[omega ,omega ^2 ,1],[omega ^2,1, omega]|=0 wher w is an imaginary cube root of unity.

CENGAGE PUBLICATION-DETERMINANTS-All Questions
  1. If a ,b ,c in R , then find the number of real roots of the equat...

    Text Solution

    |

  2. Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)| is divisible by ...

    Text Solution

    |

  3. Without expanding at any stage, prove that the value of each of the...

    Text Solution

    |

  4. If a,b c(all positive)are the p th,q thand r th terms repectively of a...

    Text Solution

    |

  5. If the entries in a 3xx3 determinant are either 0 or 1, then the grea...

    Text Solution

    |

  6. The value of the determinant of n^(t h) order, being given by |[x, 1, ...

    Text Solution

    |

  7. Prove that a!=0,|[x+a, x,x],[x,x+a,x],[x,x,x+a^2]|=0 represents a stra...

    Text Solution

    |

  8. If a1b1c1,a2b2c2 and a3b3c3 are three digit even natural numbers and ...

    Text Solution

    |

  9. If =|[a b c, b^2c,c^2b],[ a b c,c^2a, c a^2],[a b c, a^2b,b^2a]|=0,(a ...

    Text Solution

    |

  10. The value of |[yz, z x,x y],[ p,2p,3r],[1, 1, 1]|,w h e r ex ,y ,z ar...

    Text Solution

    |

  11. Show that the determinant |a^2+b^2+c^2 bc+ca+ab bc+ca+ab bc+ca+ab a^2+...

    Text Solution

    |

  12. If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0, then ...

    Text Solution

    |

  13. If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, th...

    Text Solution

    |

  14. Prove that |2 alpha+beta+gamma+delta alphabeta+gammadelta alpha+beta...

    Text Solution

    |

  15. Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]|=0.

    Text Solution

    |

  16. The value of the determinant |{:(1,,1,,1),(.^(m)C(1),,.^(m+1)C(1),...

    Text Solution

    |

  17. Solve the equation |[a-x, c, b], [ c, b-x, a], [b, a, c-x]|=0 where a...

    Text Solution

    |

  18. If a^2+b^2+c^2=-2a n df(x)= |[1+a^2x,(1+b^2)x,(1+c^2)x],[(1+a^2)x,1+b...

    Text Solution

    |

  19. Consider the set A of all determinants of order 3 with entries 0 or 1 ...

    Text Solution

    |

  20. Solve: |[x^2-1, x^2+2x+1, 2x^2+3x+1], [2x^2+x-1, 2x^2+5x-3, 2x^2+4x-3...

    Text Solution

    |