Home
Class 12
MATHS
If omega!=1 is a cube root of unity and ...

If `omega!=1` is a cube root of unity and `x+y+z!=0,` then prove that `|[x/(1+omega), y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[(z)/(omega^2+1),x/(1+omega),y/(omega+omega^2)]|=0` if `x=y=z`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If omega be an imaginaryb cube root of unity,then prove that, 1/(1+2omega)+1/(2+omega)-1/(1+omega)=0

If omega is a cube root of unity then the value of |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| is -

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^(2),-omega),(1+omega^(2),omega,-omega^(2)),(omega+omega^(2),omega,-omega^(2))| is

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega is an imaginary cube root of untiy then the value of the determinant |{:(1+omega,omega^(2),-omega),(1+omega^(2),omega,-omega^(2)),(omega+omega^(2),omega,-omega^(2)):}|=

If omega be imaginary cube root of 1 , then prove that (xomega^(2)+yomega+z)/(xomega+y+zomega^(2))=((xomega+y+zomega^(2))/(xomega^(2)+yomega+z))^(2)

If omega be an imaginary cube root or unity, prove that (1)/(1+2 omega)-(1)/(1+ omega)+(1)/(2+omega)=0

If omega is an imaginary cube root of unity, show that (omega)/(9)[(1- omega)(1-omega^(2))(1- omega^(4))(1- omega^(8))+9((c+aomega+bomega^(2))/(aomega^(2)+b+comega))^(2)]=-1

If omega be an imaginary cube root of unity, show that (xomega^(2)+yomega+z)/(xomega+y+zomega^(2))=omega

CENGAGE PUBLICATION-DETERMINANTS-All Questions
  1. Using properties of determinant prove that |[a+b+c,-c,-b],[-c, a+b+c,...

    Text Solution

    |

  2. Show that |^x Cr^x C(r+1)^x C(r+2)^y Cr^y C(r+1)^y C(r+2)^z Cr^z C(r+1...

    Text Solution

    |

  3. If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |[x/...

    Text Solution

    |

  4. Statement 1: If the system of equation lambdax+(b-a)y+(c-a)z=0,(a-b)x+...

    Text Solution

    |

  5. If A , Ba n dC are the angels of a triangle, show that |[-1+cos B, c...

    Text Solution

    |

  6. If alpha,beta,gamma are the angles of a triangle and system of equatio...

    Text Solution

    |

  7. Without expanding the determinants, prove that |(103, 115, 114), (111,...

    Text Solution

    |

  8. Given a=x//(y-z), b=y//(z-x), and c=z//(x-y),w h e r e .x , y and z a...

    Text Solution

    |

  9. Find the value of determinant |[sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)],[...

    Text Solution

    |

  10. If the lines ax+y+1=0, x+by+1=0, x+y+c=0, (a, b, c are distinct and no...

    Text Solution

    |

  11. Prove that the value of the determinant |[-7, 5+3i,2/3-4i], [5-3i,8, 4...

    Text Solution

    |

  12. If the system of linear equation x+y+z=6,x+2y+3c=14 , and 2x+5y+lambda...

    Text Solution

    |

  13. If ar=(cos2rpi+i sin 2rpi)^(19) , then prove that |[a1,a2,a3],[a4,a5,a...

    Text Solution

    |

  14. Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| ....

    Text Solution

    |

  15. Prove that,abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2))=4a^2b^2c^2.

    Text Solution

    |

  16. The number of positive integral solutions of the equation |(x^3+1,x^2y...

    Text Solution

    |

  17. If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive...

    Text Solution

    |

  18. By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,...

    Text Solution

    |

  19. Using properties of determinants, evaluate |[18, 40 ,89],[ 40 ,89, 198...

    Text Solution

    |

  20. If A1,B1,C1, are respectively, the cofactors of the elements a1, b1,c...

    Text Solution

    |