Home
Class 12
MATHS
int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) i...

`int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x)` is equal to (a) `-e^(tan^(-1)x)+c` (b) `e^(tan^(-1)x)+c` (c) `-xe^(tan^(-1)x)+c` (d) `xe^(tan^(-1)x)+c`

Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos

Similar Questions

Explore conceptually related problems

int (e^(tan^(-1)x)dx)/((1+x^(2))^(2))

int (e^(2 tan^(-1)x)(1+x)^(2)dx)/(1+x^(2))

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

int ("tan"x)/(1 + tan x )dx

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

tan^(-1) (cot x) +cot^(-1)(tan x) =pi -2x

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

int (1+tan x )/(1-tan x)dx

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.