Home
Class 12
MATHS
If a1,a2,a3,.....an.... are in G.P. then...

If `a_1,a_2,a_3,.....a_n....` are in G.P. then the determinant `Delta=|[log a_n, log a_(n+1), log a_(n+2)],[log a_(n+3),loga_(n+4),log a_(n+5)],[log a_(n+6),log a_(n+7),log a_(n+8)]|` is equal to- (A) -2 (B) 1 (C) -1 (D) 0

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a_(n)( gt 0) be the n^(th) term of a G.P. then |(log a_(n), log a_(n+1), log a_(n+2)),(log a_(n+3), loga_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7), log a_(n+8))| is equal to

If a_1,a_2…,a_n are in G.P. then evalute.: |{:(loga_n,loga_(n+1),loga_(n+2)),(loga_(n+3),loga_(n+4),loga_(n+5)),(loga_(n+6),loga_(n+7),loga_(n+8)):}|=0

If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to

If A_(1), A_(2),..,A_(n) are any n events, then

Prove that log_n(n + 1) > log_(n + 1) (n + 2) , for n > 1.

Prove that log a+log a^(3)+loga^(5)+….+loga^(2n-1)=n^(2) loga

If a_(1), a_(2), a_(3), …., a_(n) are in H.P., prove that, a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) +…+ a_(n-1)a_(n) = (n-1)a_(1)a_(n)

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

Prove that log a+log a^(2)+loga^(3)+….+loga^(n)=(n(n+1))/(2)loga

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

CENGAGE PUBLICATION-DETERMINANTS-All Questions
  1. If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b]...

    Text Solution

    |

  2. Using the properties of determinants, prove that following |(a-b-c,2a,...

    Text Solution

    |

  3. If a1,a2,a3,.....an.... are in G.P. then the determinant Delta=|[log a...

    Text Solution

    |

  4. Prove that,abs((a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1))=1+a^2+b^2+c^...

    Text Solution

    |

  5. Let vec ar=xr hat i+yr hat j+zr hat k ,r=1,2,3 be three mutually perp...

    Text Solution

    |

  6. The number of distinct roots of abs((sinx, cosx, cosx),(cosx, sinx, co...

    Text Solution

    |

  7. Let a ,b ,c be real numbers with a^2+b^2+c^2=1. Show that the eq...

    Text Solution

    |

  8. If lines p x+q y+r=0,q x+r y+p=0 and r x+p y+q=0 are concurrent, the...

    Text Solution

    |

  9. If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-...

    Text Solution

    |

  10. Find the value of lambdaif2x^2+7x y+3y^2+8x+14 y+lambda=0 represent a ...

    Text Solution

    |

  11. If x ,y ,z are different from zero and "Delta"=|[a, b-y ,c-z],[ a-x, b...

    Text Solution

    |

  12. If A , B ,C are angles of a triangle, then the value of |[e^(2i A),e^(...

    Text Solution

    |

  13. If a^2+b^2+c^2=1, then prove that |[a^2 +(b^2+c^2)cosθ, ab(1−cosθ), ...

    Text Solution

    |

  14. For the equation |[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=0, a) There are ex...

    Text Solution

    |

  15. Let Deltar=|[r-1,n,6],[(r-1)^2,2n^2,4n-2],[(r-1)^3,3n^3,3n^2-3n]|. Sho...

    Text Solution

    |

  16. Let m be a positive integer and Deltar=|[2r-1,.^mCr,1],[m^2-1,2^m,m+1]...

    Text Solution

    |

  17. a^(−1)+b^(−1)+c^(−1)=0 such that |[1+a,1,1,],[1,1+b,1,],[1,1,1+c,]| =△...

    Text Solution

    |

  18. Find the area of a triangle whose vertices are A(3,2),B(11 ,8) and C(8...

    Text Solution

    |

  19. If Dk=|[1, n, n];[ 2k, n^2+n+1, n^2+n];[ 2k-1, n^2, n^2+n+1]|a n...

    Text Solution

    |

  20. If p+-a, q+- b, r+-c and abs((p,b,c),(a,q,c),(a,b,r)) = 0 show that p...

    Text Solution

    |