Home
Class 12
MATHS
Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b...

Prove that: `|[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)`

Text Solution

Verified by Experts

Let
`Delta =|{:(-2a,,a+b,,a+c),(b+a,,-2b,,b+c),(c+a,,c+b,,-2c):}|`
Putting `a+b =0 " or " b=-a ` we get
` Delta =|{:(-2a,,0,,a+c),(0,,2a,,c-a),(c+a,,c-a,,-2c):}|`
Expanding along `R_(1)`
`=-2a {-4ac -(c-a)^(2)}-0 +(a+c) {0 -2a(c+a)}`
`=2a(c+a)^(2) -2a(c+a)^(2)`
`=0`
Hence a+b is a factor of `Delta`
Similarly b+c and c+a are the factors of `Delta`
on expansion of determinant we can see that each terms of the determinaint is a homogeneous expression in a,b,c of degree 3 and also `R.H.S.` is a homogeneous expression of degree 3.
`|{:(-2a,,a+b,,a+c),(b+a,,-2b,,b+c),(c+a,,c+b,,-2c):}| =4 (a+b)(b+c) (c+a)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Prove that, |(2a, a-b-c,2a),(2b,2b,b-c-a),(c-a-b,2c,2c)|=(a + b+c)^3

Prove that |[1, 1, 1]; [a, b, c]; [ bc+a^2, ac+b^2, ab+c^2]| = 2(a-b)(b-c)(c-a)

Prove that |a ,b+c, a^2,b, c+a, b^2,c, a+b, c^2|=-(a+b+c)xx(a-b)(b-c)(c- a)

Using properties of determinant prove that |[a+b+c,-c,-b],[-c, a+b+c,-a],[-b,-a, a+b+c]|=2(a+b)(b+c)(c+a)

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

Prove that, |{:(-2a,a,a),(-2b,b,b),(c+a,b+c,-2c):}|=0

Prove that {:[( b+c,a,a), ( b,c+a,b),( c,c,b+a) ]:} = 4abc

Prove that |[b+c ,a-b, a] ,[c+a, b-c ,b],[ a+b, c-a, c]|=3abc-a^3-b^3-c^3dot

Show that: |[a, b-c,c+b], [a+c, b, c-a],[a-b,b+a, c]| = (a+b+c)(a^2+b^2+c^2)dot

CENGAGE PUBLICATION-DETERMINANTS-All Questions
  1. If 2s=a+b+c and A=|[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[(s-c)^...

    Text Solution

    |

  2. Find the value of lambda for which |{:(2a1+b1 , 2a2+b2 , 2a3+b3),(2b1+...

    Text Solution

    |

  3. Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c...

    Text Solution

    |

  4. if a determinant of order 3xx 3 is formed by using the numbers 1 ...

    Text Solution

    |

  5. If z=|[-5, 3+4i,5-7i],[3-4i,6 ,8+7i],[5+7i,8-7i,9]|,t h e nz is (a) p...

    Text Solution

    |

  6. Consider the following linear equations: a x+b y+c z=0 b x+c y+a z=0 c...

    Text Solution

    |

  7. Let omega be the complex number cos(2pi/3)+isin(2pi/3) Then the number...

    Text Solution

    |

  8. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  9. Consider the determinant Delta=|[a1+b1x^2,a1x^2+b1,c1],[a2+b2x^2,a2x^2...

    Text Solution

    |

  10. If a x1^2+b y1^2+c z1^2=a x2 ^2+b y2 ^2+c z2 ^2=a x3 ^2+b y3 ^2+c z3 ^...

    Text Solution

    |

  11. If A , B ,a n dC are the angles of triangle, show that the system of...

    Text Solution

    |

  12. Let alpha,beta,gamma are the real roots of the equation x^3+a x^2+b x+...

    Text Solution

    |

  13. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|[a1,a2,a3],[5, 4,a6...

    Text Solution

    |

  14. If f(x) is a polynomial of degree <3, then, f(x)/((x−a)(x−b)(x−c))​is ...

    Text Solution

    |

  15. Prove that =|[a,c,c-a,a+c],[c,b,b-c,b+c],[a-b,b-c,0,a-c],[x,y,z,1+x+y]...

    Text Solution

    |

  16. Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)...

    Text Solution

    |

  17. Absolute value of sum of roots of the equation |[x+2,2x+3, 3x+4],[ 2x+...

    Text Solution

    |

  18. Let alpha1,alpha2 and beta1, beta2 be the roots of the equation ax^2+b...

    Text Solution

    |

  19. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  20. "If " a(1) ,a(2), a(3)….." are in A.P, then find the value of the fol...

    Text Solution

    |