Home
Class 12
MATHS
If g(x)=int0^xcos^4tdt , then g(x+pi) ...

If `g(x)=int_0^xcos^4tdt ,` then `g(x+pi)` equals (a)`g(x)+g(pi)` (b) `g(x)-g(pi)` (c)`g(x)g(pi)` (d) `(g(x))/(g(pi))`

A

`g(x) +g (pi)`

B

`g(x)-g (pi)`

C

`g(x)g(pi)`

D

`(g(x))/(g(pi))`

Text Solution

Verified by Experts

Given , f (x) `=int_(0)^(x)cos^(4)t dt`
`rArrg(x+pi)=int_(0)^(pi+x)cos^(4)t dt`
` = int_(0)^(pi)cos^(4)t dt+int_(pi)^(pi+x)cos^(4)t dt = I_(1)+I_(2)` where , `I_(1)=int_(0)^(pi)cos^(4)t dt=g(pi)`
and `I_(2)=int_(pi)^(pi+x)cos^(4)t dt`
Put `t=pi+y`
`rArrdt = dy`
`I_(2)=int_(0)^(x)cos^(4)(y+pi)dy`
`=int_(0)^(x)(-cosy)^(4)dy=int_(0)^(x)cos^(4)ydy=g(x)`
`:. g(x+pi)=g(pi)+g(x)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos

Similar Questions

Explore conceptually related problems

If g(x)= int_0^x cos^4t dt , then g(x + pi) equals

If g(x)=int_(0)^(x)cos4tdt , then g(x+pi) equals-

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If g(x)=int_0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where n in N , (a) g(x)+g(pi) (b) g(x)+g((npi)/(2)) (c) g(x)+g(pi/2) (d) none of these

If g(x)=int_(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(pi/2)=-2pi (b) g^(prime)(-pi/2)=-2pi (c) g^(prime)(-pi/2)=2pi (d) g^(prime)(pi/2)=2pi

If g(x)=int_0^x2|t|dt ,then (a) g(x)=x|x| (b) g(x) is monotonic (c) g(x) is differentiable at x=0 (d) gprime(x) is differentiable at x=0

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

Suppose f and g are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all x and f^(prime) and g' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x)) is equal (a) (-2f^(prime)(x))/f (b) (-2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

If a r g(z)<0, then a r g(-z)-"arg"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2

If g(x-2)=x^(2)-4x+5 , the determine - (a) g (x) and (b) g(x + 1).

CENGAGE PUBLICATION-INTEGRALS-All Questions
  1. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  2. Iff(x)=e^(g(x))a n dg(x)=int2^x(tdt)/(1+t^4), then find the value of ...

    Text Solution

    |

  3. If g(x)=int0^xcos^4tdt , then g(x+pi) equals (a)g(x)+g(pi) (b) g(...

    Text Solution

    |

  4. Evaluate lim(x to 4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  5. Evaluate: int(pi/4)^((3pi)/4)dx/(1+cosx)

    Text Solution

    |

  6. If In=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11))is equal to

    Text Solution

    |

  7. Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7....

    Text Solution

    |

  8. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  9. Evaluate: int0^(e-1)(e^((x^2+2x-1)/2))/(x+1)dx+int1^e xlogx e^(x^(2-2)...

    Text Solution

    |

  10. Evaluate lim(xrarr0)(x-int0^(x) cost^2dt)/(x^3-6x)

    Text Solution

    |

  11. The value of 2^(2010)(int0 ^1x^(1004)(1-x)^(1004)dx)/(int0^1x^(1004)(...

    Text Solution

    |

  12. If int(0)^(1)(e^(t))/(1+t)dt=a then find the value of int(0)^(1)(e^(t)...

    Text Solution

    |

  13. If f(x)=x+int0^1t(x+t)f(t)dt ,then the value of 23/2f(0) is equal...

    Text Solution

    |

  14. Let f:(0,oo)to(0,oo) be a differentiable function satisfying, int0^x(1...

    Text Solution

    |

  15. If f(x)a n dg(x) are continuous functions, then int(1nlambda)^(1n1/lam...

    Text Solution

    |

  16. The value of int-pi^pi cos^2x/[1+a^x]dx, a > 0 is

    Text Solution

    |

  17. If b=int(0)^(1) (e^(t))/(t+1)dt, then int(a-1)^(a) (e^(-t))/(t-a-1) is

    Text Solution

    |

  18. If f(x)=x+sinx , then find the value of intpi^(2pi)f^(-1)(x)dx.

    Text Solution

    |

  19. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  20. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |