Home
Class 12
MATHS
f(x) is a continuous function for all re...

`f(x)` is a continuous function for all real values of `x` and satisfies `int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot` Then `int_(-3)^5f(|x|)dx` is equal to (a) `(19)/2` (b) `(35)/2` (c) `(17)/2` (d) none of these

Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx is equal to -

If f(-x)=-f(x) , then the value of int_(-a)^af(x)dx is equal to

If f(x)=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If int f(x) dx=f(x) , then int {f(x)}^(2)dx is equal to -

If f(2a-x)=-f(x) then int_(0)^(2a)f(x)dx is equal to-

If int_[x]^(x+1) f(t)dt =[x] then th value of int_(-2)^4 f(x) dx is equal

suppose for every integer n, int_n^(n+1)f(x)dx=n^2 then the value of int_(-2)^4 f(x)dx is

If f(x) satisfies the condition of Rolle's theorem in [1,2] , then int_1^2 f'(x) dx is equal to (a) 1 (b) 3 (c) 0 (d) none of these

If |f(x)-f(y)|le2|x-y|^((3)/(2)) AAx,yinR and f(0)=1 then value of int_(0)^(1)f^2(x)dx is equal to (a) 1 (b) 2 (c) sqrt2 (d) 4

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to

CENGAGE PUBLICATION-INTEGRALS-All Questions
  1. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  2. Ify=int0^xf(t)sin{k(x-t)}dt ,t h e np rov et h a t(d^2y)/(dx^2)+k^2y=k...

    Text Solution

    |

  3. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  4. If x=int0^y (dt)/sqrt(1+9t^2) and (d^2y)/(dx^2)=ay, then find a

    Text Solution

    |

  5. The value of int(1/e)^tanx(tdt)/(1+t^2)+int(1/e)^cotxdt/(t(1+t^2) is

    Text Solution

    |

  6. Prove that: y=int(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int(1/8)^(cos^2x)cos^...

    Text Solution

    |

  7. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  8. Evaluate: int1^a xdota^(-[(log)a x])dx ,(a >1)dot

    Text Solution

    |

  9. int0^oo(sin^2x)/(x^2)dx must be same as:

    Text Solution

    |

  10. Evaluate: int1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest...

    Text Solution

    |

  11. If int(0)^(oo) (sinx)/x dx=(pi)/2, then int(0)^(oo) (sin^(3)x)/x dx i...

    Text Solution

    |

  12. Find the value of int(-1)^(1)[x^(2)+{x}]dx, where [.] and {.} denote t...

    Text Solution

    |

  13. int0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,and [dot] den...

    Text Solution

    |

  14. Prove that int0^x[cot^(-1)x]dx ,w h e r e[dot] denotes the greatest in...

    Text Solution

    |

  15. Evaluate: int(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the grea...

    Text Solution

    |

  16. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  17. Prove that int0^1xe^xdx=1

    Text Solution

    |

  18. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  19. Prove that int0^oo[n e^(-x)]dx=ln((n^n)/(n !)),w h e r en is a na...

    Text Solution

    |

  20. For x in R and a continuous function f, let I1=int(sin^2t)^(1+cos^2t)...

    Text Solution

    |