Home
Class 12
MATHS
Let f: R rarr R be a continuous odd func...

Let `f: R rarr R` be a continuous odd function, which vanishes exactly at one point and `f(1)=1/2`. Suppose that `F(x)=int_(-1)^xf(t)dt` for all `x in [-1,2]` and `G(x)=int_(-1)^x t|f(f(t))|dt` for all `x in [-1,2]`. If `lim_(x rarr 1)(F(x))/(G(x))=1/(14)`, Then the value of `f(1/2)` is

Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos

Similar Questions

Explore conceptually related problems

Let f: RR to RR be a continuous odd function, which vanishes exactly at one point and f(1)=(1)/(2) . Suppose that F(x)=int(-1)^(x)f(t)dt for all x in[-1,2] and G(x)=int_(-1)^(x)t|f(ft)|dt" for all "x in[-1,2]." If "underset(xto1)lim(F(x))/(G(x))=(1)/(14) then the value of f((1)/(2)) is-

Let f:RrarrR be a continuous odd function, which vanishes exactly at one point and f(1)=1/2. Suppose that F(x)=int_-1^xf(t)dt for all x in[-1,2] . If lim_(xto1)(F(x))/(G(x))=1/14 , then the value of f(1/2) is

Let f : R rarr R be a continuous function which satisfies f(x) = int_0^x f(t) dt . Then the value of f(log_e 5) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

Let f:RtoR be a continuous function which satisfies f(x)=int_(0)^(x)f(t)dt . Then the value of f(log_(e)5) is

if int_0^(x^2(1+x))f(t)dt=x then the value of 10f(2) must be

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If f(x)=int_(-1)^x |t|dt , then for any xge0,f(x) is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

CENGAGE PUBLICATION-INTEGRALS-All Questions
  1. If f^(prime)(x)=f(x)+int0^1f(x)dx ,gi v e nf(0)=1, then the value of ...

    Text Solution

    |

  2. STATEMENT 1: int0^pisqrt(1-sin^2x) dx=0 , STATEMENT 2: int0^picosx dx...

    Text Solution

    |

  3. STATEMENT 1: Let m be any integer. Then the value of Im=int0^pi(sin2m ...

    Text Solution

    |

  4. STATEMENT 1: inta^xf(t)dt is an even function if f(x) is an odd functi...

    Text Solution

    |

  5. STATEMENT 1: The value of int0^(2pi)cos^(99)x dx is 0 STATEMENT 2: in...

    Text Solution

    |

  6. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  7. Let S be the area of the region enclosed by y=e^(-x^(2)),y=0, x=0 and ...

    Text Solution

    |

  8. Let f : (0,infty) rarr R be given by f(x) = int(1/x)^(x) e^-(t + 1/t...

    Text Solution

    |

  9. Show that int0^pixf(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  10. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |

  11. Let f(x)=int2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Th...

    Text Solution

    |

  12. Let f be a real-valued function defined on interval (0,oo),by f(x)=lnx...

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  15. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2). T...

    Text Solution

    |

  16. The option(s) with the values of a and L that satisfy the following eq...

    Text Solution

    |

  17. Let f: R->R be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  18. Prove that int0^1tan^(-1)(1/(1-x+x^2))dx=2int0^1tan^(-1)x dx. Hence ...

    Text Solution

    |

  19. Let f(x)=|[secx,cosx,sec^2x+cotxcos ecx],[cos^2x,cos^2x, cosec^2x],[1,...

    Text Solution

    |

  20. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |