Home
Class 12
MATHS
Let f: R->R be a function defined by f(...

Let `f: R->R` be a function defined by `f(x)={[x],(xlt=2) \ \ (0,x >2)` where `[x]` is the greatest integer less than or equal to `xdot` If `I=int_(-1)^2(xf(x^2))/(2+f(x+1))dx , then \ the \ value \ of \ (4I-1)i s`

Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos

Similar Questions

Explore conceptually related problems

Let f: RR to RR be a function defined by f(x)={{:([x],x le2),(0,x gt2):} , where [x] is the greatest integer less than or equal to x. If I=int_(-1)^(2)(xf(x^(2)))/(2+f(x+1))dx , then the value of (4I-1) is-

Let f:RrarrR be a function defined by f(x)={([x],x,le,2),(0,x,gt,2):} where [x] is the greatest integer less than or equal to x. If I=int_-1^2(xf(x^2))/(2+f(x+1))dx , then the value of (4I-1) is

If f: R rarr R is a function defined by f(x)=[x]cos((2x-1)/2)pi , where [x] denotes the greatest integer function, then f is

Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

If f:RR to RR is a function defined by f(x)=[x]cos((2x-1)/(2))pi , where [x] denotes the greatest integer function, then f is-

Let f : (4, 6)to(6, 8) be a function defined by f(x) x+[x/2] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

If f(x)= x-[x],x(phi0)inR , where [x] is greatest integer less than or equal to x, then the number of solution of f(x)+f(1/x)=1 are

f:(2,3)->(0,1) defined by f(x)=x-[x] ,where [dot] represents the greatest integer function.

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to-

The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the greatest integer less than or equal to x , is (a) R (b) [0,oo] (c) (-oo,0) (d) none of these

CENGAGE PUBLICATION-INTEGRALS-All Questions
  1. If f^(prime)(x)=f(x)+int0^1f(x)dx ,gi v e nf(0)=1, then the value of ...

    Text Solution

    |

  2. STATEMENT 1: int0^pisqrt(1-sin^2x) dx=0 , STATEMENT 2: int0^picosx dx...

    Text Solution

    |

  3. STATEMENT 1: Let m be any integer. Then the value of Im=int0^pi(sin2m ...

    Text Solution

    |

  4. STATEMENT 1: inta^xf(t)dt is an even function if f(x) is an odd functi...

    Text Solution

    |

  5. STATEMENT 1: The value of int0^(2pi)cos^(99)x dx is 0 STATEMENT 2: in...

    Text Solution

    |

  6. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  7. Let S be the area of the region enclosed by y=e^(-x^(2)),y=0, x=0 and ...

    Text Solution

    |

  8. Let f : (0,infty) rarr R be given by f(x) = int(1/x)^(x) e^-(t + 1/t...

    Text Solution

    |

  9. Show that int0^pixf(sinx)dx=pi/2int0^pif(sinx)dxdot

    Text Solution

    |

  10. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |

  11. Let f(x)=int2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Th...

    Text Solution

    |

  12. Let f be a real-valued function defined on interval (0,oo),by f(x)=lnx...

    Text Solution

    |

  13. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  14. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  15. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2). T...

    Text Solution

    |

  16. The option(s) with the values of a and L that satisfy the following eq...

    Text Solution

    |

  17. Let f: R->R be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  18. Prove that int0^1tan^(-1)(1/(1-x+x^2))dx=2int0^1tan^(-1)x dx. Hence ...

    Text Solution

    |

  19. Let f(x)=|[secx,cosx,sec^2x+cotxcos ecx],[cos^2x,cos^2x, cosec^2x],[1,...

    Text Solution

    |

  20. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |