Home
Class 12
MATHS
The projection of point P( vec p) on the...

The projection of point `P( vec p)` on the plane ` vec r. vec n=q ` is `( vec s)` , then a. ` vec s=((q- vec p. vec n) vec n)/(| vec n|^2)` b. ` vec s=p+((q- vec p. vec n) vec n)/(| vec n|^2)` c. ` vec s=p-(( vec p. vec n) vec n)/(| vec n|^2)` d. ` vec s=p-((q- vec p. vec n) vec n)/(| vec n|^2)`

Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES INTEGER TYPE|1 Videos

Similar Questions

Explore conceptually related problems

The reflection of the point vec a in the plane vec rdot vec n=q is a. vec a+(( vec q- vec adot vec n))/(| vec n|) b. vec a+2((( vec q- vec adot vec n))/(| vec n|^2)) vec n c. vec a+(2( vec q+ vec adot vec n))/(| vec n|^2) vec n d. none of these

Distance of point P( vec p) from the plane vec rdot vec n=0 is a. | vec pdot vec n| b. (| vec pxx vec n|)/(| vec n|) c. (| vec pdot vec n|)/(| vec n|) d. none of these

Distance of the point P( vec p) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

Prove that [ vec l vec m vec n][ vec a vec b vec c]=| (vec l. vec a, vec l. vec b, vec l.vec c), (vec m. vec a, vec m. vec b, vec m.vec c),( vec n. vec a, vec n. vec b, vec n.vec c)| .

Find the equation of a straight line in the plane vec r* vec n=d which is parallel to vec r= vec a+lambda vec b and passes through the foot of the perpendicular drawn from point P( vec a)to vec rdot vec n=d(w h e r e vec ndot vec b=0)dot a. vec r= vec a+((d- vec a*vec n)/(n^2))n+lambda vec b b. vec r= vec a+((d- vec a* vec n)/n)n+lambda vec b c. vec r= vec a+(( vec a* vec n-d)/(n^2))n+lambda vec b d. vec r= vec a+(( vec a* vec n-d)/n)n+lambda vec b

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

If vectors vec aa n d vec b are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is a. vec b+( vec bxx vec a)/(| vec a|^2) b. ( vec adot vec b)/(| vec b|^2) c. vec b-( vec bdot vec a)/(| vec a|^2) d. ( vec axx( vec bxx vec a))/(| vec b|^2)

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec a .( vec bxx vec c))/( vec b .( vec cxx vec a))+( vec b .( vec cxx vec a))/( vec c .( vec axx vec b))+( vec c . ( vec bxx vec a))/( vec a . ( vec bxx vec c))

Let vec pa n d vec q be any two orthogonal vectors of equal magnitude 4 each. Let vec a , vec b ,a n d vec c be any three vectors of lengths 7sqrt(15)a n d2sqrt(33), mutually perpendicular to each other. Then find the distance of the vector ( vec adot vec p) vec p+( vec adot vec q) vec q+( vec adot( vec pxx vec q))( vec pxx vec q)+( vec bdot vec p) vec p( vec bdot vec q) vec q+( vec bdot( vec pxx vec q))( vec pxx vec q)+( vec cdot vec p) vec p+( vec cdot vec q) vec q+( vec cdot( vec pxx vec q))( vec pxx vec q) from the origin.

CENGAGE PUBLICATION-THREE DIMENSIONAL GEOMETRY-All Questions
  1. A line l passing through the origin is perpendicular to the lines l1: ...

    Text Solution

    |

  2. Two lines L1: x=5, y/(3-alpha)=z/(-2) and L2: x=alpha, y/(-1)=z/(2-alp...

    Text Solution

    |

  3. The projection of point P( vec p) on the plane vec r. vec n=q is ( v...

    Text Solution

    |

  4. The angle between i and line of the intersection of the plane vec r ....

    Text Solution

    |

  5. From the point P(a ,b ,c), let perpendicualars P La n dP M be drawn to...

    Text Solution

    |

  6. The plane vec rdot vec n=q will contain the line vec r= vec a+lambd...

    Text Solution

    |

  7. Consider triangle A O B in the x-y plane, where A-=(1,0,0),B-=(0,2,0)a...

    Text Solution

    |

  8. Let vec a= hat i+ hat j and vec b=2 hat i- hat k , then the point of ...

    Text Solution

    |

  9. The line (x+6)/5=(y+10)/3=(z+14)/8 is the hypotenuse of an isosceles ...

    Text Solution

    |

  10. The equation of the plane which passes through the line of intersect...

    Text Solution

    |

  11. The coordinates of the point P on the line vec r=( hat i+ hat j+ h...

    Text Solution

    |

  12. The ratio in which the line segment joining the points whose positio...

    Text Solution

    |

  13. The number of planes that are equidistant from four non-coplanar point...

    Text Solution

    |

  14. In a three-dimensional coordinate system, P ,Q , and Rare images of a...

    Text Solution

    |

  15. A plane passing through (1,1,1) cuts positive direction of coordinates...

    Text Solution

    |

  16. If lines x=y=za n dx=y/2=z/3 and third line passing through (1,1,1) fo...

    Text Solution

    |

  17. The point of intersection of the line passing through (0,0,1) and ...

    Text Solution

    |

  18. Shortest distance between the lines (x-1)/1=(y-1)/1=(z-1)/1a n d(x-...

    Text Solution

    |

  19. Distance of point P( vec p) from the plane vec rdot vec n=0 is a. | v...

    Text Solution

    |

  20. The reflection of the point vec a in the plane vec rdot vec n=q is...

    Text Solution

    |