Home
Class 12
MATHS
If (x(y+z-x))/(logx)=(y(z+x-y))/(logy) ...

If `(x(y+z-x))/(logx)=(y(z+x-y))/(logy) =(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x`

Text Solution

Verified by Experts

Let `(x(y+z-x))/(log_(a) x) = (y(z+x-y))/(log_(a)y) = (z(x+y-z))/(log_(a) z) = k`
` rArr log_(a) x = (x(y+z-x))/k`
` rArr x = a^((x(y+z-x))/k)`
Similarly,` y = a ^((y(x+z-y))/k) and z=a^((z(x+y-z))/k)`
Now `x^(y)y^(x) = a^ ((xy(y+z-x))/k)a^((yx(z+x-y))/k)`
` = a ^((xy^(2)+xyz-x^(2)y+xyz+x^(2)y-xy^(2))/k)=a^((2xyz)/k)`
Similarly,` z^(y)y^(z) = x^(z)z^(x) = a^((2xyz)/k)`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.16|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.17|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.14|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If (logx)/(y-z)=(logy)/(z-x)=(logz)/(x-y) show that x^(x)y^(y)z^(z)=1

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

Knowledge Check

  • ((x-y)^(3)+(y-z)^(3)+(z-x)^(3))/((x-y)(y-z)(z-x))=

    A
    3xyz
    B
    3
    C
    xyz
    D
    0
  • If x+y=2z, then x/(x-z)+z/(y-z)=?

    A
    0
    B
    1
    C
    -1
    D
    2
  • Similar Questions

    Explore conceptually related problems

    If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

    If (logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y) , then prove that (i) x^(x) . y^(y) . z^(z) = 1 .

    If (y+z-x)/(b+c-a) = (z+x-y)/(c+a-b) = (x+y -z)/(a + b - c)", then prove that "x/a = y/b = z/c .

    If (x+y+z)(y+z-x)(z+x-y)(x+y-z) prop x^2y^2 then show that either x^2+y^2= z^2 or x^2+y^2-z^2 prop xy .

    If (a-x)/(p x)=(a-y)/(q y)=(a-z)/(rz) and p ,q ,and r are in A.P., then prove that x ,y ,z are in H.P.

    Prove that x^(log y - logz) xx y^(log z - logx) xx z^(log x - log y) = 1 .