Home
Class 12
MATHS
If log(3) y = x and log(2) z = x ,...

If ` log_(3) y = x and log_(2) z = x , " find " 72^(x)` in terms of y and z.

Text Solution

Verified by Experts

` log_(3) y = x`
` rArr y = 3^(x)`
` log_(2) z=x`
` rArr z = 2^(x)`
Now, ` 72^(x) = (2^(3)3^(2))^(x) = 2^(3x)3^(2x) =( 2^(x))^(3)(3^(x))^(2)=y^(3)z^(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.15|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.16|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.13|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If log_(5) x = a and log_(2) y = a ," find "100^(2a-1) in terms of x and y .

If (log)_3y=xa n d(log)_2z=x , find 72^x in terms of yand zdot

If log_(10) x = y ," then find "log_(1000)x^(2)" in terms of " y .

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

y=2^(1/((log)_x4) , then find x in terms of y.

If 3+log_(10)x = 2log_(10)y , then express x in terms of y .

If log_(3)x + log_(3)y =2 + log_(3)2 and log_(3)(x+y) =2 , then

If x : y = 2 : 3 , y : z = 4 : 7 , then find x : y : z .

If x = log_(a)(bc), y = log_(b)(ca), z = log_(c)(ab) , then find 1/(x+1) + 1/(y+1) + 1/(z+1)

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is