Home
Class 12
MATHS
If n >1,then prove that 1/((log)2n)+1/(...

If `n >1`,then prove that `1/((log)_2n)+1/((log)_3n)+.......+1/((log)_(53)n)=1/((log)_(53 !)n)dot`

Text Solution

Verified by Experts

The given expression is equal to
`log_(n) 2+ log_(n) 3 +...+log_(n) 53 = log_(n) (2 xx 3 xx ...xx53)`
` log_(n) 53! = 1/(log_(53!^(n)))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.31|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.32|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.29|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Prove that 1/3<(log)_(10)3<1/2dot

Prove that 1/(log_2 pi) + 1/(log_(6)pi) > 2 .

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

Prove that (2^((log)_2 1/4x)-3^((log)_(27)(x^2+1)^3)-2x) /(7^(4(log)_(49)x)-x-1)>0

Prove that (v) 1/(log_(xy)(xyz)) + 1/(log_(yz)(xyz)) + 1/(log_(zx)(xyz)) = 2

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

If agt0,cgt0,b=sqrt(ac),a,c and ac ne 1 , N gt0 prove that (log_(a)N)/(log_(c )N)=(log_(a)N-log_(b)N)/(log_(b)N-log_(c )N)

The value of N=((log)_5 250)/((log)_(50)5)-((log)_5 10)/((log)_(1250)5) is...........

Solve (log)_2(3x-2)=(log)_(1/2)x