Home
Class 12
MATHS
Let a= log(3) 20, b = log(4) 15 and c =...

Let `a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12`. Then find the value of `1/(a+1)+1/(b+1)+1/(c+1)`.

Text Solution

Verified by Experts

We have
`a+1 = log_(3) 20 + log_(3) 3 = log_(3) 60`
` b+ 1 = log_(4) 15 + log_(4) 4 = log_(4) 60`
` c+1 = log_(5) 12+ log_(5) 5 = log_(5) 60`
`1/(a+1)+1/(b+1)+1/(c+1)=1/(log_(3) 60)+1/(log_(4)60)+1/(log_(5)60)`
` =log_(60)3+log_(60)4+log_(60)5`
` = log_(60)(3 xx 4 xx 5)`
` = log_(60) 60`
` = 1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.32|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.33|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.30|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If 1/(log_(x)10) = 2/(log_(0.5)10) , then find the value of x.

If a = log_(245) 175 and b = log_(1715) 875, then the value of (1-ab)/(a-b) is ________.

If log_(sqrt8) b = 3 1/3 , then find the value of b.

Prove log_(b)b = 1

If x = log_(a)(bc), y = log_(b)(ca), z = log_(c)(ab) , then find 1/(x+1) + 1/(y+1) + 1/(z+1)

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If x=log_(a)bc,y=log_(b)ca,z=log_(c)ab, then the value of (1)/(1+x)+(1)/(1+y)+(1)/(1+z) will be

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

If log_(40)4 = a and log_(40)5 = b , then show that log_(40)16=4(1-a-b) .