Home
Class 12
MATHS
Find the length of the perpendicular ...

Find the length of the perpendicular drawn from the point`(5,4,-1)` to the line ` vec r= hat i+lambda(2 hat i+9 hat j+5 hat k),` wher `lambda` is a parameter.

Text Solution

Verified by Experts

Let P be the foot of the perpendicular fromt the point `A(5, 4, -1)` to the line `l` whose equation is `vecr=hati+lamda(2hati+9hatj+5hatk)`.
The coordinates on any point on the line are given by
`" "x=1+2lamda`,
`" "y=9lamda and z=5lamda`.
The coordinates of P are given by `1+2lamda, 9lamda and 5lamda` for some value of `lamda`.
The direction ratios of AP are `1+2lamda-5, 9lamda-4 and 5lamda-(-1) or 2lamda-4, 9lamda-4 and 5lamda+1`.
Also, the direction ratios of `l` are 2, 9 and 5.
Since `AP bot l, a_(1)a_(2)+b_(1)b_(2)+c_(1)c_(2)=0`
`rArr" "2(2lamda-4)+9(9lamda-5)+5(5lamda+1)=0`
or `" "4lamda-8+81lamda-36+25lamda+5=0`
or `" "110lamda-39=0 or lamda=39//110`
Now, `AP^(2) = (1+2lamda-5)^(2)+(9lamda-4)^(2)+(5lamda-(-1))^(2)`
`" "=(2lamda-4)^(2)+(9lamda-4)^(2)+(5lamda+1)^(2)`
`" "=4lamda^(2)-16lamda+16+ 81lamda^(2)-72lamda+16 + 25lamda^(2) +10lamda+1=110lamda^(2)-78lamda+33`
`" "=110((39)/(110))^(2)-78((39)/(110))+33`
`" "=(39^(2)-78xx39+33xx110)/(110)=(2109)/(110)`
or `" "AP=sqrt((2109)/(110))`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.3|19 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.4|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.1|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

Find the length of the perpendicular drawn from the point (5,4,-1) to the line vec(r)=hat(i)+t(2hat(i)+9hat(j)+5hat(k))

Find the equation of the perpendicular drawn from the point P(-1,3,2) to the line vec(r)=(2hat(i)+3hat(k))+t(2hat(i)+hat(j)+3hat(k)) . Also find the coordinates of the foot of the perpendicular from P.

Find the foot of the perpendicular drawn from the point (2hat(i)-hat(j)+5hat(k)) to the line vec(r)=(11hat(i)-2hat(j)-8hat(k))+t(10hat(i)-4hat(j)-11hat(k)) . Find also the length of the perpendicular.

Find the point where line which passes through point (1,2,3) and is parallel to line vec r= hat i+ hat j+2 hat k+lambda( hat i-2 hat j+3 hat k) meets the xy-plane.

Find the equation of the plane which is parallel to the lines vec r= hat i+ hat j+lambda(2 hat i+ hat j+4 hat k)a n d(x+1)/(-3)=(y-3)/2=(z+2)/1"" and is passing through the point (0,1,-1 ).

Find the equation of the line passing through the point (2,-1,3) and parallel to the line vec(r)=(hat(i)-2hat(j)+hat(k))+lamda(2hat(i)+3hat(j)-5hat(k))

Find the unit vector perpendicular to the plane vec r.(2 hat i+ hat j+2 hat k)=5.

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

Find the vector of length 3 unit which is perpendicular to hat i+ hat j+ hat k and lies in the plane of hat i+ hat j+ hat k and 2 hat i-3 hat j .

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot(( hat i+5 hat j+ hat k))=5.