Home
Class 12
MATHS
Statement 1: Lines vec r= hat i+ hat j-...

Statement 1: Lines ` vec r= hat i+ hat j- hat k+lambda(3 hat i- hat j)a n d vec r=4 hat i- hat k+mu(2 hat i+3 hat k)` intersect. Statement 2: ` vec bxx vec d=0` , then lines ` vec r= vec a+lambda vec ba n d vec r= vec c+lambda vec d` do not intersect.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
c

For the given lines, let `vec(a_1) =hati+hatj-hatk, vec(a_2)= 4hati-hatk, vec(b_1) = 3hati-hatj and vec(b_2) = 2hati+3hatk`. Therefore,
`" "[vec(a_(2))-vec(a_(1))vec(b_1)vec(b_2)]=|{:(4-1,,0-1,,-1+1),(3,,-1,,0),(2,,0,,3):}|`
`" "= |{:(3,,-1,,0),(3,,-1,,0),(2,,0,,3):}|=0`
Hence, the lines are coplanar. Also vector `vec(b_1) adn vec(b_2)` along which the lines are directed are not collinear.
Hence, the lines intersect. When `vecbxxvecd=vec0` , vectors and `vecr=vecc+lamdavecd` are parallel and do not intersect. But this statement is not the correct explanation for Statement 1.
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise MATRIX-MATCH TYPE|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot Then find [vec a vec b vec c]

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i+3 hat j-2 hat k

If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and vec c=z hat i+x hat j+y hat k , then vec axx( vec bxx vec c) is

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot(( hat i+5 hat j+ hat k))=5.

if vec a= 5 hat i -hat j -3 hat k and vec b=hat i+3 hat j - 5 hat k , Find vec a . vec b =?

Let vec a=- hat i- hat k , vec b=- hat i+ hat ja n d vec c= hat i+2 hat j+3 hat k be three given vectors. If vec r is a vector such that vec rxx vec b= vec cxx vec b and vec r dot vec a=0, then find the value of vec rdot vec bdot

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

Let vec a= hat i+4 hat j+2 hat k , vec b=3 hat i-2 hat j+7 hat ka n d vec c=2 hat i- hat j+4 hat kdot Find a vector vec d which is perpendicular to both vec a and vec b and vec c. vec d=15.

If vec a= hat i+ hat j+ hat k and vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec a . vec c=2 and vec axx vec c= vec bdot