Home
Class 12
MATHS
Let P(3,2,6) be a point in space and Q b...

Let `P(3,2,6)` be a point in space and `Q` be a point on line ` vec r=( hat i- hat j+2 hat k)+mu(-3 hat i+ hat j+5 hat k)dot` Then the value of `mu` for which the vector ` vec P Q` is parallel to the plane `x-4y+3z=1` is a. 1/4 b. -1/4 c. 1/8 d. -1/8

A

`1//4`

B

`-1//4`

C

`1//8`

D

`-1//8`

Text Solution

Verified by Experts

The correct Answer is:
a

Any point on the line can be taken as
`" "Q= {(1-3mu), (mu-1), (5mu+2)}`
`" "vec(PQ)= {-3mu-2, mu-3, 5mu-4)
Now, 1(-3mu-2)-4(mu-3)+3(5mu-4)=0`
or `" "-3mu-2-4mu+12+15mu-12=0`
or `" "8mu= 2 or mu = 1//4`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES MULTIPLE CORRECT ANSWERS TYPE|4 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES REASONING TYPE|2 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES SUBJECTIVE TYPE|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r . dot(3 hat i- hat j+ hat k)=4.

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot(( hat i+5 hat j+ hat k))=5.

If the planes vec r ( hat i+ hat j+ hat k)=q_1, vec r ( hat i+2a hat j+ hat k)=q_2a n d vec r (a hat i+a^2 hat j+ hat k)=q_3 intersect in a line, then the value of a is a. 1 b. 1//2 c. 2 d. 0

For what values of p and q the vectors 2 hat (i) + p hat (j) - 3 hat (k) and q hat (i) - 4 hat (j) + 2 hat (k) are parallel ?

If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and vec c=z hat i+x hat j+y hat k , then vec axx( vec bxx vec c) is

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

Find the angle between the lines vec r=3 hat i+2 hat j-4 hat k+lambda( hat i+2 hat j+2 hat k) a n d vec r=(5 hat j-2 hat k)+mu(3 hat i+2 hat j+6 hat k)dot

Find the point where line which passes through point (1,2,3) and is parallel to line vec r= hat i+ hat j+2 hat k+lambda( hat i-2 hat j+3 hat k) meets the xy-plane.