Home
Class 12
MATHS
Evaluate: lim(x->1)sec(pi/(2x))logxdot...

Evaluate: `lim_(x->1)sec(pi/(2x))logxdot`

Text Solution

Verified by Experts

We have, `underset(xto1)lim(log_(e)x)/("cos"(pi)/(2^(x)))=underset(xto1)lim(log(1+(x-1)))/(underset(xto1)lim(sin((pi)/(2)-(pi)/(2^(x))))/(((pi)/(2)-(pi)/(2^(x))))).underset(xto1)lim(x-1)/((pi)/(2)-(pi)/(2^(x)))`
`=underset(xto1)lim(x-1)/(pi((2^(x-1)-1)/(2^(x))))`
`=underset(xto1)lim(2^(x))/(pi).(x-1)/(2^(x-1)-1)`
`=(2)/(pilog2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->2) (x^2-1)/(2x+4)

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

Evaluate: lim_(x->pi/2)(cosx)^(cosx)

Evaluate: lim_(x->0)(e^x-1-x)/(x^2)

Evaluate: lim_(x->0)(x2^x-x)/(1-cosx)

Evaluate : lim_(x->1)(2/(1-x^2)+1/(x-1))

Evaluate : lim_(xto(pi)/(2))(cos3x+3cosx)/(((pi)/(2)-x)^(3))

Evaluate : lim_(xrarrpi/2)(pi/2-x)tanx

Evaluate: lim_(x->2)(x-2)/((log)_a(x-1))

Evaluate: lim_(x->0)(1/(x^2)-1/(sin^2x))