Home
Class 12
MATHS
If |f(x)|lex^(2), then prove that lim(xt...

If `|f(x)|lex^(2),` then prove that `lim_(xto0) (f(x))/(x)=0.`

Text Solution

Verified by Experts

We have `|f(x)|lex^(2)`
`:." "|(f(x))/(x)|le|x|`
`implies" "underset(xto0)lim|(f(x))/(x)|leunderset(xto0)lim|x|`
`implies" "|underset(xto0)lim(f(x))/(x)|le0`
`implies" "|underset(xto0)lim(f(x))/(x)|=0`
`implies" "underset(xto0)lim(f(x))/(x)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Prove that lim_(xto0)(1+3x)^(3/x)=e^(9)

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Prove that: lim_(xto0)log(1+2x)/(sin3x)=(2)/(3)

Evaluate lim_(xto0) (logcosx)/(x)

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Prove that: lim_(xto0)(p^(x)-q^(x))/(tanx)=log"(p)/(q)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

lim_(xto0+)(e^x+x)^((1)/(x))

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).