Home
Class 12
MATHS
If f(x)=(tanx)/(x), then find lim(xto0)(...

If `f(x)=(tanx)/(x)`, then find `lim_(xto0)([f(x)]+x^(2))^((1)/({f(x)}))`, where `[.]` and `{.}` denotes greatest integer and fractional part function respectively.

Text Solution

Verified by Experts

We know that `underset(xto0)lim(tanx)/(x)=1^(+)`
`:." "underset(xto0)lim[(tanx)/(x)]=1`
and `underset(xto0)lim{(tanx)/(x)}=underset(xto0)lim((tanx)/(x)-[(tanx)/(x)])`
`=underset(xto0)lim((tanx)/(x)-1)`
`:." "underset(xto0)lim([f(x)]+x^(2))^((1)/({f(s)}))=underset(xto0)lim(1+x^(2))^(underset(xto0)lim((1)/(tanx))/(x)-1)`
`=e^(underset(xto0)lim((x^(2))/(tanx))/(x)-1)`
`=e^(underset(xto0)lim(x^(3)cosx)/(sinx-xcosx))`
`=e^(underset(xto0)lim(x^(3))/((x+(x^(3))/(3!)+...)-x(1-(x^(2))/(2!)+...)))`
`=e^(underset(xto0)lim(x^(3))/(-(x^(3))/(3!)+(x^(3))/(2!)))=e^(3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

Number of solution of equation [x]^2=x+2{x} is/are , where [.] and {.} denote the greatest integer and the fractional part functions, respectively

Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] and {.} denote the greatest integer function and fractional part repectively .

Let lim_(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer. Then, m equals to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

If f(x) = [x] , 0<= {x} < 0.5 and f(x) = [x]+1 , 0.5<{x}<1 then prove that f (x) = -f(-x) (where[.] and{.} represent the greatest integer function and the fractional part function, respectively).

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )