Home
Class 12
MATHS
Evaluate lim(xto2^(+)) ([x-2])/(log(x-2)...

Evaluate `lim_(xto2^(+)) ([x-2])/(log(x-2)),` where `[.]` represents the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
0

`L=underset(xto2^(+))lim([x-2])/(log(x-2))`
When `xto2^(+),x-2to0^(+)`
or `[x-2]=0`
Also, `log(x-2)tolog0^(+)to-oo`
Thus, `L=("exact "0)/(-oo)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Prove that lim_(xto2) [x] does not exists, where [.] represents the greatest integer function.

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evaluate: lim_(x->2)(x-2)/((log)_a(x-1))

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Evaluate int_(1)^(a)x.a^(-[log_(a)x])dx,(agt1) .Here [.] represents the greatest integer function.

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).