Home
Class 12
MATHS
Show that ("lim")(xrarr0) (e^(1/x)-1)/(e...

Show that `("lim")_(xrarr0)` `(e^(1/x)-1)/(e^(1/x)+1)` does not exist

Text Solution

Verified by Experts

Let `f(x)=(e^(1//x)-1)/(e^(1//x)+1)`
L.H.L of `f(x) " at "x=0` is
`underset(xto0^(-))limf(x)=underset(hto0)lim(0-h)=underset(hto0)lim(e^(-1//h)-1)/(e^(-1//h)+1)`
`underset(hto0^(-))lim(((1)/(e^(1//h))-1)/((1)/(e^(1//h))+1))=-1`
`[becausehto0implies1/htoooimpliese^(1//h)toooimplies(1)/(e^(1//h))to0]`
R.H.L. of `f(x)` at `x=0` is
`underset(xto0)limf(x)=underset(hto0)limf(0+h)=underset(hto0)lim(e^(1//h)-1)/(e^(1//h)+1)`
`=underset(hto0)lim((1-(1)/(e^(1//h)))/(1+(1)/(e^(h))))" "`[Dividing Nr and Dr by `e^(1//h`)]
`=(1-0)/(1+0)=1`
Clearly, `underset(xto0^(-))limf(x)neunderset(xto0^(+))limf(x )`
Hence, `underset(xto0)limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Show that lim_(xrarr0)(x^2sin(1/x))/(sinx)=0

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Evaluate : lim_(xrarr0)(sqrt(1+x)-1)/(x)

Evaluate: lim_(xrarr0)(e^(x^2)-cosx)/x^2

underset(xrarr0)"lim"(e^(3x)-1)/(x) =

Prove that: lim_(xrarr0)tanx/x=1

The value of lim_(xrarr0)(2^x-1)/(sqrt(1+x)-1) is

Evaluate: lim_(xrarr0)(sqrt(1+x+x^2)-1)/x

Prove that lim_(xrarr0)sqrt(1-cosx)/x does not exist

prove that lim_(xrarr0) log_(e)((sinx)/(x))=0