Home
Class 12
MATHS
Evaluate lim(x->0)(3x+|x|)/(7x-5|x|)...

Evaluate `lim_(x->0)(3x+|x|)/(7x-5|x|)`

Text Solution

Verified by Experts

The correct Answer is:
Limit does not exist.

`underset(xto0^(-))lim(3x+|x|)/(7x-5|x|)=underset(xto0^(-))lim(3x-x)/(7x-5x)=1/6`
and `underset(xto0^(+))lim(3x+|x|)/(7x-5|x|)=underset(xto0)lim(3x+x)/(7x-5x)=2`
Hence, the limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)(3^x-1)/x

Evaluate: lim_(x->0)(tan2x-x)/(3x-sinx)

Evaluate: lim_(x->0)(e^x-1-x)/(x^2)

Evaluate: lim_(x->0)(logcosx)/x

Evaluate: lim_(x->0)(x2^x-x)/(1-cosx)

Evaluate: lim_(xrarr0)x^x

Evaluate: lim_(x->0)(3^(2x)-2^(3x))/x

Evaluate lim_(x->0^-) (x^2-3x+2)/(x^3-2x^2)

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

Evaluate: lim_(x->oo) (x+7sinx)/(-2x+13)