Home
Class 12
MATHS
Consider the following graph of the func...

Consider the following graph of the function y=f(x). Which of the following is//are correct?

`(a) lim_(xto1) f(x)` does not exist.
`(b) lim_(xto2)f(x)` does not exist.
`(c) lim_(xto3) f(x)=3.`
`(d)lim_(xto1.99) f(x)`exists.

Text Solution

Verified by Experts

The correct Answer is:
(a), ( c ), (d)

`a. underset(xto1^(+))limf(x)=3" and "underset(xto1^(-))limf(x)=2." Thus,"underset(xto1)limf(x)` does not exist.
`b. underset(xto2^(+))limf(x)=underset(xto2^(-))limf(x)=3." Thus,"underset(xto2)limf(x)` exist.
`c. underset(xto3^(+))limf(x)=underset(xto3^(-))limf(x)=3." Thus,"underset(xto3)limf(x)` exist.
`d. underset(xto1.99^(+))limf(x)=underset(xto1.99^(-))limf(x)=3." Thus,"underset(xto1.99)limf(x)` exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Statement - I: if lim_(x to 0)((sinx)/(x)+f(x)) does not exist, then lim_(x to 0)f(x) does not exist. Statement - II: lim_( x to 0)(sinx)/(x)=1

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

Show that lim_(xto1)(sqrt(1-cos(x-1)))/(x-1) does not exist.

If lim_(x->a)[f(x)g(x)] exists, then both lim_(xtoa)f(x) and lim_(x->a)g(x) exist.

If f(x)=(|x|)/(x),"show that ,"underset(xrarr0)"lim"f(x) does not exist .

lim _(xto3)[x] is equal to-

If lim_(xtoa) {(f(x))/(g(x))} exists, then which one of the following correct ?

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x) does not exist.

The graph of y = f(x) is as shown in the following figure. Find the following values (i) f(-3)" "(ii) f(-2)" "(iii) f(0) (iv) f(2)" "(v) f(3)" "(vi) lim_(x to -3) f(x) (vii) lim_(x to 0) f(x)" "(viii)lim_(x to 2) f(x)" "(ix) lim_(x to 3) f(x) (x) lim_(x to 2^(-)) f(x)" "(x i)lim_(x to -2^(+)) f (x)" "(x ii)lim_(x to 0^(-)) f(x) (x iii) lim_(x to 0^(+)) f(x)