Home
Class 12
MATHS
Evaluate lim(xto0) {(sinx-x+(x^(3))/(6))...

Evaluate `lim_(xto0) {(sinx-x+(x^(3))/(6))/(x^(5))}.`

Text Solution

Verified by Experts

The correct Answer is:
`1//120`

`underset(xto0)lim(sinx-x+(x^(3))/(6))/(x^(5))=underset(xto0)lim(x-(x^(3))/(3!)+(x^(5))/(5!)-(x^(7))/(7!)+* * *-x+(x^(3))/(6))/(x^(5))`
`=underset(xto0)lim((1)/(5!)-(x^(2))/(7!)+...)=(1)/(120)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate: lim_(xto0)(sinx+cosx)^(1//x)

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate: lim_(xto0)(cosx)^(cot^(2)x)

Evaluate lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)).

Evaluate: lim_(xto0)(e^(ax)+e^(Bx)-2)/(x)

Evaluate: lim_(xto0)(1+sin2x)^(cosecx)

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Evaluate : lim_(xrarr0)(x-sinx)/x^3