Home
Class 12
MATHS
If f(x)=sgn(x)" and "g(x)=x^(3),then pro...

If `f(x)=sgn(x)" and "g(x)=x^(3)`,then prove that `lim_(xto0) f(x).g(x)` exists though `lim_(xto0) f(x)` does not exist.

Text Solution

Verified by Experts

`f(x)=sgn(x)={{:(1", "xgt0),(-1", "xlt0),(0", "x=0):}`
`:." "underset(xto0^(+))limf(x)=1" and "underset(xto0^(+))limf(x)=-1`
Now `f(x)xxg(x)={{:(x^(3)", "xgt0),(-x^(3)", "xlt0),(0", "x=0):}`
`:." "underset(xto0^(+))limf(x).g(x)=underset(xto0^(+))limx^(3)=0`
and`" "underset(xto0^(-))limf(x).g(x)=underset(xto0^(+))lim(-x^(3))=0`
Thus`" "underset(xto0)limf(x).g(x)` exists.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

Prove that lim_(xto0)(1+3x)^(3/x)=e^(9)

Evaluate lim_(xto0) (logcosx)/(x)

If lim_(x->a)[f(x)g(x)] exists, then both lim_(xtoa)f(x) and lim_(x->a)g(x) exist.

The value of lim_(xto0+)(x)/(p)[(q)/(x)] is

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Consider the following graph of the function y=f(x). Which of the following is//are correct? (a) lim_(xto1) f(x) does not exist. (b) lim_(xto2)f(x) does not exist. (c) lim_(xto3) f(x)=3. (d)lim_(xto1.99) f(x) exists.

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x) is (A) exists and equals to 4 (B) does not exist (C) exists and equals to 0 (D) exists and equals 4//7 .

lim_(xto0+)(e^x+x)^((1)/(x))

Evaluate lim_(xto0) (sinx-x)/(x^(3)).