Home
Class 12
MATHS
If f(x)={:(sin[x]","" ""for "[x]ne0),(0...

If `f(x)={:(sin[x]","" ""for "[x]ne0),(0","" ""for "[x]=0):}`where `[x]` denotes the greatest integer less than or equal to x. Then find `lim_(xto0)f(x).`

Text Solution

Verified by Experts

The correct Answer is:
Limit does not exist.

We have `f(x)={{:((sin[x])/([x])" ""if "x in(-oo", "0)uu[1", "oo)),(0" "" if "x in[0", "1)):}`
`:." "underset(xto0^(-))limf(x)=underset(hto0)lim(sin[-h])/( [-h])=underset(hto0)lim(sin(-1))/((-1))=sin1`
and `underset(xto0^(+))limf(x)=underset(hto0)lim0=0`
Thus `underset(xto0-)limf(x)neunderset(xto0+)limf(x)`
`:." "underset(xto0^(-))limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs(x)-sin(x[x]))^2)/x^2

if [x] denotes the greatest integer less than or equal to x then integral int_0^2x^2[x] dx equals

[x] denotes the greatest integer, less than or equal to x, then the value of the integral int_(0)^(2)x^(2)[x]dx equals

If a and b are positive and [x] denotes greatest integer less than or equal to x, then find lim_(xto0^(+)) x/a[(b)/(x)].

Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

For each tinR," let "[t] be the greatest integer less than or equal to t. Then find lim_(xto0^(+)) x([(1)/(x)]+[(2)/(x)]+...+[(15)/(x)])

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f (x)=[x] , where [x] denotes greatest integer less than or equal to x ,show that , underset(xrarr2)"lim"f(x) does not exist .

If f(x)= x-[x],x(phi0)inR , where [x] is greatest integer less than or equal to x, then the number of solution of f(x)+f(1/x)=1 are