Home
Class 12
MATHS
Find the value of lim(xto0^(+)) (sinx)^(...

Find the value of `lim_(xto0^(+)) (sinx)^((1)/(x))`.

Text Solution

Verified by Experts

The correct Answer is:
0

`underset(xto0^(+))lim(sinx)^((1)/(x))=(underset(xto0^(+))limsinx)^(underset(xto0^(+))lim(1)/(x))=0^(oo)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

The value of lim_(xto0+)(x)/(p)[(q)/(x)] is

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

lim_(xto0)(sinx)^(2tanx)=

Evaluate lim_(xto0) (x)^((1)/(log_(e)sinx)).

Find the value of lim_(xto1)(x^(x)-1)/(xlogx)-lim_(xto0)log(1-3x)/(x).

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

lim_(xto0+)(e^x+x)^((1)/(x))

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate: lim_(xto0)(sinx+cosx)^(1//x)