Home
Class 12
MATHS
Let the sequence ltb(n)gt of real number...

Let the sequence `ltb_(n)gt` of real numbers satisfy the recurrence relation `b_(n+1)=1/3(2b_(n)+(125)/(b_(n)^(2))),b_(n)ne0.` Then find `lim_(ntooo) b_(n).`

Text Solution

Verified by Experts

The correct Answer is:
5

Let `underset(ntooo)limb_(n)=b`
Now `b_(n+1)=1/3(2b_(n)+(125)/(b_(n)^(2)))`
`implies" "underset(ntooo)limb_(n+1)=1/3(2underset(ntooo)limb_(n)+(125)/(underset(ntooo)limb_(n)^(2)))`
`implies" "b=1/3(2b+(125)/(b^(2)))" "( :.underset(ntooo)limb_(n)=underset(ntooo)limb_(n+1)=b)`
`implies" "b/3=(125)/(3b^(2))`
`implies" "b^(3)=125`
`implies" "b=5`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0 for all n in N , then find lim_(n->oo)f(n)

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

Evaluate lim_(ntooo) (1)/(n^(2(log_(e)n-log_(e)(n+1)))+n) .

If a_(1)=1 and a_(n+1)=(4+3a_(n))/(3+2a_(n)),nge1"and if" lim_(ntooo) a_(n)=a,"then find the value of a."

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2)^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

Show that log_(b)(1/(b^n)) = -n

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Let agtbgt0 and I(n)=a^((1)/n)-b^((1)/(n)),J(n)=(a-b)^((1/(n)) for all nge2 . Then