Home
Class 12
MATHS
If (x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x...

If `(x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x^(2)+2x-1)/(x+3)` holds for a certain interval containing the value of `lim_(xto-1) f(x).`

Text Solution

Verified by Experts

The correct Answer is:
-1

`(x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x^(2)+2x-1)/(x+3)`
or `underset(xto-1)lim(x^(2)+x-2)/(x+3)leunderset(xto-1)lim(f(x))/(x^(2))leunderset(xto-1)lim(x^(2)+2x-1)/(x+3)`
or` 1-leunderset(xto-1)lim(f(x))/(x^(2))le-1`
or`underset(xto-1)lim(f(x))/(x^(2))=-1" "`(Using Sandwich theorem)
or`(underset(xto-1)limf(x))/(underset(xto-1)limx^(2))=-1`
or `underset(xto-1)limf(x)=-underset(xto-1)limx^(2)=-1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If 3-((x^(2))/(12))lef(x)le3+((x^(3))/(9)) in the neighborhood of x=0, then find the value of lim_(xto0) f(x).

(x+1)/3le(2x-1)/4,x in R

3(x-1) le 2 (x-3)

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) and phi(x)=cos^(-1)((1-x^(2))/(1+x^(2))) , then the value of lim_(x to a) (f(x)-f(a))/(phi(x)-phi(a))(0 lt a lt (1)/(2)) is -

If f(x) is differentiable and strictly increasing function, then the value of lim_(xto0)(f(x^2)-f(x))/(f(x)-f(0)) is

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

If f(x)=|(sinx, cosx, tanx),(x^(3),x^(2),x),(2x,1,1)| then the value of lim_(x to 0) (f(x))/(x^(2)) is -

If the relation f(x)={(2x-3",",x le 2),(x^(3)-a",",x ge2):} is a function, then find the value of a.

Evaluate lim_(xto1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3).

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.