Home
Class 12
MATHS
Evaluate: lim(x->oo)[x(a^(1/x)-1)], a >1...

Evaluate: `lim_(x->oo)[x(a^(1/x)-1)], a >1`

Text Solution

Verified by Experts

The correct Answer is:
`log_(e)a`

`underset(xtooo)limx(a^(1//x)-1)=underset(xtooo)lim[(a^(1//x)-1)/(1//x)]=log_(e)a`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.5|12 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

Evaluate: lim_(x->0)(e^x-1-x)/(x^2)

Evaluate: lim_(x->2) (x^2-1)/(2x+4)

Evaluate lim_(xtooo)(1+2/x)^(x)

Evaluate: lim_(xto1)(x^(x)-1)/(xlogx)

Evaluate: ("lim")_(xtooo) (1+1/x)^x

Evaluate: lim_(x->oo)x(tan^(-1)((x+1)/(x+4))-pi/4)

Evaluate: lim_(x->oo) (x+7sinx)/(-2x+13)

Evaluate : lim_(x->1)(2/(1-x^2)+1/(x-1))

Evaluate: lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)