Home
Class 12
MATHS
lim(xtoa) (log(x-a))/(log(e^(x)-e^(a)))...

`lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))`

Text Solution

Verified by Experts

The correct Answer is:
1

`underset(xtoa)lim(log(x-a))/(log(e^(x)-a^(a)))`
`=underset(xtoa)lim((1)/(x-a))/(e^(x)/(e^(x)-e^(a)))" "`(Applying L'Hospital's rule)
`=underset(xtoa)lim(e^(x)-e^(a))/(e^(x)(x-a))`
`=underset(xtoa)lim(e^(a)(e^(x-a)-1))/(e^(x)(x-a))`
=1
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.5|12 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->a)("log"(x-a))/(log(e^x-e^a))

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

Find the following limits: (i) lim_(xto0) (1-x)^((1)/(x))" "(ii) lim_(xto1) (1+log_(e)x)^((1)/(log_(e)x)) (iii)lim_(xto0) (1+sinx)^((1)/(x))

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=

Prove that: lim_(x rarr 0) (log(1+x)+sinx)/(e^(x)-1)=2

Show that : lim_(xto2)(sin(e^(x-2)-1))/(log(x-1))=1

Evaluate lim_(xto0) (x)^((1)/(log_(e)sinx)).

Evaluate: lim_(x to 0)(sinx)/(log_(e)(1+x)^(1/4)