Home
Class 12
MATHS
Find the value of lim(x to 1) (log3 3x)^...

Find the value of `lim_(x to 1) (log_3 3x)^(log_x 3)`

Text Solution

Verified by Experts

The correct Answer is:
`e`

`underset(xtooo)lim(log_(3)3x)^(log_(x)3)=underset(xto1)lim(log_(3)+log_(3)x)^((1)/(log_(3)x))`
`=underset(xto1)lim(1+log_(3)x)^((1)/(log_(3)x))" "(1^(oo)"form")`
=e
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.6|9 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Find the value of lim_(xto3^(-)) (x-2)/(x-3).

Find the value of lim_(xto1)(x^(x)-1)/(xlogx)-lim_(xto0)log(1-3x)/(x).

Find the value lim_(x to 0) (e^sinx -1)/(log_e (1+x))

Evaluate lim_(xtooo) (log_(e)x)/(x)

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

The value of lim_(x to 0)(e^(x)-log(e+ex))/(x) is -

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)

The value of lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x))) is _______.

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.