Home
Class 12
MATHS
Evaluate: ("lim")(x->7/2)(2x^2-9x+8)^(co...

Evaluate: `("lim")_(x->7/2)(2x^2-9x+8)^(cot(2x-7))`

A

both `underset(xtoa)limf(x)` and `underset(xtoa)limg(x)` must exist

B

`underset(xtoa)limf(x)` need not exist but `underset(xtoa)limg(x)` exists

C

neither `underset(xtoa)limf(x)` nor `underset(xtoa)limg(x)` may exist

D

`underset(xtoa)limf(x)` exists but `underset(xtoa)limg(x)` need not exist

Text Solution

Verified by Experts

The correct Answer is:
`e^(5//2)`

Given limit takes `1^(oo)` form: Therefore,
`L=underset(xto7//2)lim(2x^(2)-9x+8)^(cot(2x-7))`
`=underset(xto7//2)lim((2x-7)(x-1)+1)^(cot(2x-7))`
`=e^(underset(xtox_(7//2))lim((2x-7)(x-1))cot(2x-7))`
`=e^(underset(xtox_(7//2))lim((2x-7)(x-1))/(tan(2x-7)))`
`=e^(5//2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.6|9 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->2) (x^2-1)/(2x+4)

Evaluate: lim_(x->2)(x^2-x-2)/(x^2-2x-"sin"(x-2))

Evaluate: lim_(x->0)(cot2x-cos e c2x)/x

lim_(x->4)(x-2)/(x-8)

Evaluate : lim_(x->pi/4)(1-cot^3x)/(2-cotx-cot^3x)

Evaluate: int(dx)/((2x-7)(x-7)

Evaluate : lim_(xrarr3)(x^2-9)/(sqrt(x-2)-sqrt(4-x))

Evaluate lim_(x->0^-) (x^2-3x+2)/(x^3-2x^2)

Evaluate: lim_(x->oo) (x+7sinx)/(-2x+13)

Evaluate: lim_(x->0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}