Home
Class 12
MATHS
If x(1) and x(2) are the real and distin...

If `x_(1)` and `x_(2)` are the real and distinct roots of `ax^(2)+bx+c=0` then prove that `lim_(xtox1) (1+sin(ax^(2)+bx+c))^(1/(x-x_(1)).` equals to

A

`e^((x_(1)-x_(2)))`

B

1

C

`oo`

D

`(1)/(2)`

Text Solution

Verified by Experts

`ax^(2)+bx+c=a(x-x_(1))(x-x_(2))`
`underset(xtox1)lim(1+sin(ax^(2)+bx+c))^((1)/(x-x_(1)))" "(1^(oo))" form")`
`=e^(underset(xtox_(1))lim(sin(a(x-x_(1))(x-x_(2))))/((x-x_(1))))`
`=e^(underset(xtox_(1))lim(sin(a(x-x_(1)).(x-x_(2))))/(a(x-x_(1))(x-x_(2))).a(x-x_(2)))`
`=e^(a(x_(1)-x_(2)))`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.6|9 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(e^(ax)+e^(Bx)-2)/(x)

If alpha and beta be the roots of the quadratic equation ax^2+bx+c=0 then evaluate lim_(xrarralpha)(1-cos(ax^2+bx+c))/((x-alpha)^2)

If alpha and beta be the roots of ax^(2)+bx+c=0andL=underset(xrarrbeta)"lim"(1-cos(ax^(2)+bx+c))/(x-beta)^(2) , then - L = ?

If alpha and beta are the roots of ax^2+bx+c =0, then the equation ax^2-bx(x-1)+c(x-1)^2 =0 has roots

If alpha and beta be the roots of ax^(2)+bx+c=0andL=underset(xrarrbeta)"lim"(1-cos(ax^(2)+bx+c))/(x-beta)^(2) , then - if L=0 , then -

If 1,2,3 and 4 are the roots of the equation x^4+ax^3+bx^2+cx+d =0 then a+2b+c=

If alpha and beta are the roots of the equation ax^(2)+bx+c=0 , then show that underset(xrarralpha)"lim"(1-cos(ax^(2)+bx+c))/((x-alpha)^(2))=(a^(2))/(2)(alpha-beta)^(2)

Let alpha , beta (a lt b) be the roots of the equation ax^(2)+bx+c=0 . If lim_(xtoalpha ) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1 then

If the roots of x^2+bx+c =0 are both real and greater than unity, then (b+c+1)

If x^(2) +ax - 3x-(a+2) = 0 has real and distinct roots, then minimum value of (a^(2)+1)/(a^(2)+2) is