Home
Class 12
MATHS
Consider lim(x to oo)((x^(3)+x^(2)+x+sin...

Consider `lim_(x to oo)((x^(3)+x^(2)+x+sinx)/(x^(2)+2cosx)-asinx-bx+c)=4`. Now, match the following lists and then choose the correct code.

Text Solution

Verified by Experts

The correct Answer is:
`(4)`

`underset(xtooo)lim((x^(3)+x^(2)+x+sinx)/(x^(2)+2cosx)-asinx-bx+c)=4`
`implies" "underset(xtooo)lim((x+1+(1)/(x)+(sinx)/(x^(2)))/(1+(2cosx)/(x^(2)))-asinx-bx+c)=4`
`implies" "underset(xtooo)lim(x+1-asinx-bx+c)=4`
`implies" "underset(xtooo)lim((1-b)x-asinx+1+c)=4`
`implies" "1-b=0,a=0" and "1+c=4`
`implies" "b=1,a=0" and "c=3`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Archives JEE MAIN|8 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Consider int(x^(3)+3x^(2)+2x+1)/(sqrt(x^(2)+x+1))dx =(ax^(2)+bx+c)sqrt(x^(2)+x+1)+lambda int(dx)/(sqrt(x^(2)+x+1)) Now, match the following lists and then choose the correct code. Codes: {:(,a,b,c,d),((1),q,p,s,r),((2),s,p,q,r),((3),r,q,p,s),((4),q,s,p,r):}

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

lim_(x to oo) (sqrt(x^2+ax+a^2)-sqrt(x^2+a^2))

lim_(x to 1)((x^2-3x+2)/(x^3-4x+3))

lim_(x to oo) sinx/x = ?

Evaluate lim_(xtooo) ((x^(2)+x-1)/(3x^(2)+2x+4))^((3x^(2)+x)/(x-2))

lim_(x to 0) (1-cosx)/x^2 = ?

lim_(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

If lim_(x to oo) [ (x^(3)+1)/(x^(2)+1)-(ax+b)]=2 , then the values of a and b are -

Evaluate lim_(xtooo) (3^(sinx)+2x+1)/(sinx-sqrt(x^(2)+1)).