Home
Class 12
MATHS
For each tin R,let[t]be the greatest int...

For each t`in R`,let[t]be the greatest integer less than or equal to t. Then
`lim_(xto1^+)((1-absx+sinabs(1-x))sin(pi/2[1-x]))/(abs(1-x)[1-x])`

A

equals-1

B

equals 1

C

does not exist

D

equals 0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs(x)-sin(x[x]))^2)/x^2

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto0^-) (x([x]+absx)sin[x])/absx is equal to a) -sin1 b) 0 c) 1 d) sin 1

For each tinR," let "[t] be the greatest integer less than or equal to t. Then find lim_(xto0^(+)) x([(1)/(x)]+[(2)/(x)]+...+[(15)/(x)])

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

If a and b are positive and [x] denotes greatest integer less than or equal to x, then find lim_(xto0^(+)) x/a[(b)/(x)].

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

Let [x] denotes the greatest integer less then or equal to x. If x=(sqrt3+1)^5 , then [x] is equal to

If f(x)={:(sin[x]","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

For a real number y, let [y] denotes the greatest integer less than or equal to y. Then the function f(x) = fractan[(x-pi)pi] (1+[x]^2 is :

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).