Home
Class 12
MATHS
let [x] denote the greatest integer less...

let [x] denote the greatest integer less than or equal to x.
Then `lim_(xto0) (tan(pisin^2x)+(abs(x)-sin(x[x]))^2)/x^2`

A

equals `pi`

B

equals 0

C

equals `pi+1`

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:(sin[x]","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

if [x] denotes the greatest integer less than or equal to x then integral int_0^2x^2[x] dx equals

For each x in R , let [x]be the greatest integer less than or equal to x. Then lim_(xto0^-) (x([x]+absx)sin[x])/absx is equal to a) -sin1 b) 0 c) 1 d) sin 1

For each t in R ,let[t]be the greatest integer less than or equal to t. Then lim_(xto1^+)((1-absx+sinabs(1-x))sin(pi/2[1-x]))/(abs(1-x)[1-x])

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).

If a and b are positive and [x] denotes greatest integer less than or equal to x, then find lim_(xto0^(+)) x/a[(b)/(x)].

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

Let [ x ] denote the greatest integer less than or equal to x, then the value of the integral int_-1^1 (absx - 2[x]) dx is equal to

Let [x] denote the greatest integer less than or equal to x for any real number x. Then lim_(n to oo) ([n sqrt(2)])/(n) is equal to