Home
Class 12
MATHS
lim(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sq...

`lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x))` is equal to

A

`1/(sqrt(2pi))`

B

`sqrtpi/2`

C

`sqrt(2/pi)`

D

`sqrtpi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

The value of sin^(-1)[xsqrt(1-x)+sqrt(x)sqrt(1-x^2)] is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

lim_(x to 0) (pi^(x)-1)/(sqrt(1+x)-1)

lim_(xrarr0)sqrt(1-cos2x)/(sqrt2x) is equal to

lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to