Home
Class 12
MATHS
for x > 1 if (2x)^(2y)=4e^(2x-2y) then (...

for `x > 1` if `(2x)^(2y)=4e^(2x-2y)` then `(1+log_e 2x)^2 (dy)/(dx)`

A

`log_e 2x`

B

`(xlog_e2x+log_e2)/x`

C

`xlog_e2x`

D

`(xlog_e2x-log_e2)/x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 5|3 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 2|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=1+e^(2x-y) , given y=2, when x=2

(2x+4y+3)(dy)/(dx)=2y+x+1

If x=e^(tan^(-1)((y-x^(2))/(x^(2)))) then the value of (dy)/(dx) is -

If log(x^2-y^2)/(x^2+Y^2)=a the prove that (dy/dx)=y/x

Find (dy)/(dx) when : log(xy)=e^(x+y)+2

Find (dy)/(dx) : y =2^(x+2)-e^(x+1)+3log_(e) x

(dy)/(dx)=e^(x-y)+x^(2)e^(-y)

If y = (e^(x))/(1+x^(2)) , determine (dy)/(dx) .

If x=(e^(y)-e^(-y))/(e^(y)+e^(-y)) show that y=1/2log_(e )((1+x)/(1-x))

If t a n y=(2^x)/(1+2^(2x+1)),t h e n(dy)/(dx) at x=0 is