Home
Class 12
MATHS
Let f(x) = (x)/(sqrt(a^(2) + x^(2)))- (d...

Let `f(x) = (x)/(sqrt(a^(2) + x^(2)))- (d-x)/(sqrt(b^(2) + (d-x)^(2))), x in R`, where a, b and d are non-zero real constants. Then,

A

f is a decreasing function of x

B

f is neither increasing nor decreasing function of x

C

f' is not a continuous function of x

D

f is an increasing function of x

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 7|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 8|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 5|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Show that, (d)/(dx) [(x)/(2) sqrt(a^(2)-x^(2)) +(a^(2))/(2) "sin"^(-1) (x)/(a)]=sqrt(a^(2)-x^(2))

Let f(x)=x^(3) + bx^(2) +cx +d, 0 lt b^(2) lt c . Then f(x)-

Let f(x)=(sqrt(x-2 sqrt(x-1)))/(sqrt(x-1)-1) , then -

Show that , d/(dx)[x/2sqrt(a^2-x^2)+a^2/2 sin^(-1)x/a]=sqrt(a^2-x^2)

If 2 + i and sqrt(5)-2i are the roots of the equation (x^(2)+ax+b)(x^(2)+cx+d)=0 where a , b , c , d are real constants then product of all roots of the equation is -

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

Let f(x) = a+ b|x| + c|x|^4 where a, b and continuous are real constants . Then, f(x) is differentiable at x = 0, if

If x = (sqrt(a^2+b^2)+sqrt(a^2-b^2))/(sqrt(a^2+b^2)-sqrt(a^2-b^2)) show that b^2x^2-2a^2x+b^2 =0 .

"If "y=(2)/(sqrt(a^(2)-b^(2))){tan^(-1)(sqrt((a-b)/(a+b))tan""(x)/(2))}," then show that "(d^(2)y)/(dx^(2))=(b sin x)/((a+b cos x)^(2)).