Home
Class 12
MATHS
Let f(x)=x^3-3(a-2)x^2+3ax+7 and f(x) is...

Let `f(x)=x^3-3(a-2)x^2+3ax+7` and `f(x)` is increasing in `(0,1]` and decreasing is `[1,5)`, then roots of the equation `(f(x)-14)/((x-1)^2)=0` is (A) `1` (B) `3` (C) `7` (D) `-2`

A

6

B

5

C

7

D

-7

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 7|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 8|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 5|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x+3)=x^2 -3x -1 .then find f(x+1)

If f(x)=xe^(x(1-x)) , then f(x) is(a) increasing on [−1/2,1] (b) decreasing on R (c) increasing on R (d) decreasing on [−1/2,1]

If f(x)=3x^2-5x+7 , then find f(x-1)

If f(x)=x^2-3x+1 , then find f(0) .

Roots of this equation are, (x^3+1/x^3)+(x^2+1/x^2)-6(x+1/x)-7=0

If f(x-2)=2x^2+3x-5 , find f(x) and prove that f(-1) = 0.

Let f(x)= x^3+3x^2+6x+2sinx , then the equation 1/(x-f(1))+2/(x-f(2))+3/(x-f(3))=0 ,has

Let f(x)=2x^(2)+3x+5and A={:[(2,1),(3,4)]:} . find f(A).

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

Let f(x)=x^4-4x^3+6x^2-4x+1. Then, (a) f increase on [1,oo] (b) f decreases on [1,oo] (c) f has a minimum at x=1 (d) f has neither maximum nor minimum