Home
Class 12
MATHS
Let I=int(a)^(b) (x^4-2x^2)dx. If is min...

Let `I=int_(a)^(b) (x^4-2x^2)dx`. If is minimum, then the ordered pair (a, b) is

A

`(-sqrt2, 0)`

B

`(-sqrt2, sqrt2)`

C

`(0,sqrt2)`

D

`(sqrt2,-sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)x^(2)dx

int_(a)^(b)e^(x)dx

Knowledge Check

  • Let I=int_(10)^(19)(sinx)/(1+x^8)dx . Then,

    A
    `|I|lt10^(-9)`
    B
    `|I|lt10^(-7)`
    C
    `|I|lt10^(-5)`
    D
    `|I|gt10^(-7)`
  • Let I=int_0^1(x^3cos3x)/(2+x^2)dx . Then

    A
    `-(1)/(2)ltIlt(1)/(2)`
    B
    `-(1)/(3)ltIlt(1)/(3)`
    C
    `-1ltIlt1`
    D
    `-(3)/(2)ltIlt(3)/(2)`
  • Similar Questions

    Explore conceptually related problems

    int_(1)^(4)3x^(2)dx

    int_(1)^(2)4^(x)dx

    int_(a)^(b)sqrt((x-a)/(x-b))dx

    int (x^2+4x+2) dx is

    int ((x-a)(b-x))dx

    Let I_n=int tan^n x dx, (n>1) . If I_4+I_6=a tan^5 x + bx^5 + C , Where C is a constant of integration, then the ordered pair (a,b) is equal to :