Home
Class 12
MATHS
If int(0)^(x)f(t)dt=x^2+int(x)^(1)t^2f(t...

If `int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt`, then `f((1)/(2))` is equal to

A

`6/25`

B

`24/25`

C

`18/25`

D

`4/5`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is (a) [0,∞) (b) R (c) (−∞,0] (d) [−1/2,1/2]

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-

If f is continuous function and F(x)=int_0^x((2t+3)*int_t^2f(u)d u)dt , then |(F''(2))/(f(2))| is equal to_____

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

If x int_(0)^(x)sin(f(t))dx=(x+2)int_(0)^(1)tsin(f(t))dt , where xgt0 , then show that f'(x)cot f(x)+3/(1+x)=0

Let f(x) = int_2^x f(t^2-3t+2) dt then