Home
Class 12
MATHS
lim(ntoinfty) (n/(n^2+1^2)+n/(n^2+2^2)+n...

`lim_(ntoinfty) (n/(n^2+1^2)+n/(n^2+2^2)+n/(n^2+3^2)+...+n/(5n^2))` is equal to

A

`pi/4`

B

`tan^(-1)(2)`

C

`tan^(-1)(3)`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+...+(n)/(n^(2)+n^(2))]

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

Evalute : lim_(ntooo)[(n)/(n^2+1^2)+(n)/(n^2+2^2)+........+(1)/(2n)] .

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

underset(nrarrinfty)lim((n+1)(n+2)....3n)/(n^(2n)))^(1/n) is equal to

lim_(nrarroo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+...+(1)/(n)]

lim_(n->oo){1/(1-n^2)+2/(1-n^2)+......n/(1-n^2)} is equal to (a) 0 (b) -1/2 (c) 1/2 (d) none of these

Prove that, lim_(ntooo)[(n)/(n^(2))+(n+1)/(n^(2))+(n+2)/(n^(2))+.......+(2n)/(n^(2))]=(3)/(2)