Home
Class 12
MATHS
Solve the equations.tan^(-1)((1-x)/(1+x)...

Solve the equations.`tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)`

Text Solution

Verified by Experts

The correct Answer is:
`x = (1)/(sqrt3)`

`tan^(-1) ((1 -x)/(1 + x)) = (1)/(2) tan^(-1) x, x gt 0`
If `x in (0,1)`
`tan^(-1) ((1 -x)/(1 + x)) = tan^(-1) 1 - tan^(-1) x`
Therefore, given equation reduces to
`tan^(-1) 1 - tan^(-1)x = (1)/(2) tan^(-1) x`
`rArr (pi)/(4) = (3)/(2) tan^(-1)x`
`rArr (pi)/(6) = tan^(-1) x`
`:. x = (1)/(sqrt3)`
For `x in (1, oo)`
`tan^(-1) ((1 - x)/(1 + x)) = pi + tan^(-1) 1 - tan^(-1) x = (5pi)/(4) - tan^(-1) x`
Therefore, given equation reduces to
`(5 pi)/(4) - tan^(-1) x = (1)/(2) tan^(-1) x`
or `(5pi)/(6) = tan^(-1) x`, which is not possible,
Hence, only one solution is `x = (1)/(sqrt3)`
Alternate Solution
`tan^(-1) ((1-x)/(1 + x)) = (1)/(2) tan^(-1) x`
`rArr 2 tan^(-1) ((1 - x)/(1 + x)) = tan^(-1) x`
`rArr tan^(-1).(2((1- x)/(1 + x)))/(1 - ((1 - x)/(1 + x))^(2)) = tan^(-1) x`
`rArr tan^(-1).(2(1 -x^(2)))/(4x) = tan^(-1) x`
`rArr 1 -x^(2) = 2x^(2)`
`rArr 3x^(2) =1`
`:. x = +- (1)/(sqrt3)`
But for `x = -(1)/(sqrt3)`, L.H.S. of (1) is `gt 0`, and R.H.S. is `lt 0`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : "tan"^(-1)(1-x)/(1+x)=1/2tan^(-1)x,(xgt0)

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

tan ^(-1)""(1-x)/(1+x)-(1)/(2) tan ^(-1 )""x=0 where x gt 0

Solve the following equations : tan^(-1)(x/y)-"tan"^(-1)(x-y)/(x+y) is equal to

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

tan ^(-1)""(1-x)/(1+x)""=(1)/(2) sin ^(-1)""(x)/(sqrt(1+x^(2)))

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

CENGAGE PUBLICATION-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. Write the following function in the simplest form: tan^(-1)((3a^2x-x^3...

    Text Solution

    |

  2. Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

    Text Solution

    |

  3. Solve the equations.tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

    Text Solution

    |

  4. If x + y + z = xyz and x, y, z gt 0, then find the value of tan^(-1) x...

    Text Solution

    |

  5. If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0, ...

    Text Solution

    |

  6. Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

    Text Solution

    |

  7. Prove that sum(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(...

    Text Solution

    |

  8. If cos^(-1).(x)/(2) + cos^(-1).(y)/(3) = (pi)/(6), then prove that (x^...

    Text Solution

    |

  9. Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) ...

    Text Solution

    |

  10. solve the following equation sec^(-1).(x)/(a) - sec^(-1).(x)/(b) = sec...

    Text Solution

    |

  11. If a^(2) + b^(2) = c^(2), c != 0, then find the non-zero solution of t...

    Text Solution

    |

  12. If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alp...

    Text Solution

    |

  13. prove that, 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))

    Text Solution

    |

  14. If x in (0, 1), then find the value of tan^(-1) ((1 -x^(2))/(2x)) + co...

    Text Solution

    |

  15. If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

    Text Solution

    |

  16. sin(2sin^(-1) 0.8)=

    Text Solution

    |

  17. cos^(-1)("cos"(2cot^(-1)(sqrt(2)-1))) is equal to (a) sqrt(2)-1 (b) p...

    Text Solution

    |

  18. The value of sin^(-1)("cot"(sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)((sqr...

    Text Solution

    |

  19. If cot^(-1)(n/(pi))>(pi)/6, n in N, then the maximum value of n is :

    Text Solution

    |

  20. If cosec^(-1)(cosecx) and cosec(cosec^(-1)x) are equal functions, then...

    Text Solution

    |